Cho hàm số y= căn bậc hai (2, - 1) sin x - (m + 2) cos x + 4m - 4) (1). Có tất
Câu hỏi:
Cho hàm số \(y = \sqrt {\left( {2m - 1} \right)\sin x - \left( {m + 2} \right)\cos x + 4m - 3} \) (1). Có tất cả bao nhiêu giá trị nguyên dương nhỏ hơn 2019 của tham số m để hàm số (1) xác định với mọi x ∈ ℝ?
Trả lời:
Ta có: (2m − 1)sin x − (m + 2)cos x + 4m – 3 ≥ 0, ∀x ∈ ℝ
⇔ m(2sin x – cos x + 4) ≥ sin x + 2cos x + 3, ∀x ∈ ℝ (1)
Ta có:
\( - \sqrt {{2^2} + {{\left( { - 1} \right)}^2}} \le 2\sin x - \cos x \le \sqrt {{2^2} + {{\left( { - 1} \right)}^2}} \)
⇔ \( - \sqrt 5 \le 2\sin x - \cos x \le \sqrt 5 \)
⇔ \( - \sqrt 5 + 4 \le 2\sin x - \cos x + 4 \le \sqrt 5 + 4\)
⇒ 2sin x – cos x + 4 > 0, ∀x ∈ ℝ
Khi đó ta có (1) ⇔ \(m \ge \frac{{\sin x + 2\cos x + 3}}{{2\sin x - \cos x + 4}}\), ∀x ∈ ℝ (2).
Đặt \(f\left( x \right) = \frac{{\sin x + 2\cos x + 3}}{{2\sin x - \cos x + 4}}\) ta có m ≥ f(x), ∀x ∈ ℝ ⇔ \(m \ge \mathop {\max }\limits_\mathbb{R} \,\,f\left( x \right).\)
Gọi \(M = \mathop {\max }\limits_\mathbb{R} \,\,f\left( x \right),\) khi đó tồn tại x ∈ ℝ để \(M = \frac{{\sin x + 2\cos x + 3}}{{2\sin x - \cos x + 4}}.\)
⇔ 2Msin x – Mcos x + 4M = sin x + 2cos x + 3
⇔ (2M – 1)sin x – (M + 2)cos x = 3 – 4M
Phương trình trên có nghiệm
⇔ \({\left( {2M - 1} \right)^2} + {\left( {M + 2} \right)^2} \ge {\left( {3 - 4M} \right)^2}\)
⇔ \(4{M^2} - 4M + 1 + {M^2} + 4M + 4 \ge 16{M^2} - 24M + 9\)
⇔ \( - 11{M^2} + 24M - 4 \ge 0\)
⇔ \(\frac{2}{{11}} \le M \le 1\)
⇒ \(M = \mathop {\max }\limits_\mathbb{R} f\left( x \right) = 1\) ⇒ (2) ⇔ m ≥ 1.
Mặt khác, m là số nguyên dương nhỏ hơn 2019 nên m ∈ {2; 3; 4; 5; ....; 2018} là các giá trị thỏa mãn.
Vậy có 2017 giá trị của m thỏa mãn.