X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ bên. Số nghiệm thực


Câu hỏi:

Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình 2f(x2 – 1) – 5 = 0 là:

Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ bên. Số nghiệm thực  (ảnh 1)

A. 3;

B. 2;

C. 6;

D. 4.

Trả lời:

Đáp án đúng là: B

2f(x2 – 1) – 5 = 0

Đặt t = x2 – 1 (t ≥ −1)

Phương trình (1) trở thành

2f(t) – 5 = 0

\( \Leftrightarrow \left( t \right) = \frac{5}{2}\)

\( \Leftrightarrow \left[ \begin{array}{l}t = a(a < - 3)\\t = b\left( {b \in \left\{ { - 2; - 1} \right\}} \right)\\t = c\left( {c \in \left\{ { - 1;0} \right\}} \right)\end{array} \right.\)

Ta có t = c (thỏa mãn)

c = x2 – 1 \( \Leftrightarrow x = \pm \sqrt {c + 1} \)

Vậy số nghiệm thực của phương trình (1) là 2.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho lăng trụ đứng ABC.A’B’C’, đáy ABC là tam giác vuông tại A. E là trung điểm của B’C’, CB’ cắt BE tại M. Tính thể tích V của khối tứ diện ABCM biết AB = 3a, AA’ = 6a.

Xem lời giải »


Câu 2:

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại B, biết BA = BC = 2a và (A’BC) hợp với đáy một góc 30°. Tính thể tích khối lăng trụ ABC.A’B’C’ là:

Xem lời giải »


Câu 3:

Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, tâm O và \(\widehat {ABC} = 120^\circ \). Các cạnh AA', A'B, A'D cùng tạo với đáy một góc 60°. Tính theo a thể tích V của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Quãng đường AB gồm một đoạn lên dốc dài 4 km và một đoạn xuống dốc dài 5 km. Một người đi xe đạp từ A đến B hết 40 phút và đi từ B về A hết 41 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc và lúc xuống dốc.

Xem lời giải »


Câu 5:

Cho tứ giác ABCD có a là góc nhọn tạo bởi hai đường chéo. Chứng minh rằng \({S_{ABCD}} = \frac{1}{2}.AC.BD.\sin a\).

Xem lời giải »


Câu 6:

Giá trị của tan30° + cot30° bằng bao nhiêu?

Xem lời giải »


Câu 7:

Tập nghiệm của phương trình \({5^x}{.8^{\frac{{x - 1}}{x}}} = 500\)

Xem lời giải »


Câu 8:

Giải phương trình \(\sin 3x - \frac{2}{{\sqrt 3 }}{\sin ^2}x = 2\sin x.\cos 2x\)

Xem lời giải »