X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA vuông góc (ABCD)


Câu hỏi:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng aSA (ABCD)\[SA = a\sqrt 3 \]. Gọi M là trung điểm của SD. Tính khoảng cách giữa hai đường thẳng AB và CM.

Trả lời:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA vuông góc (ABCD) (ảnh 1)

AB // CD Þ AB // (SCD) CM

Þ d(AB,CM) = d(AB;(SCD)) = d(A,(SCD))

Kẻ AH SD, H SD (1) ta có: 

CD AD, CD SA Þ CD (SAD) Þ SD AH (2)

Từ (1),(2) suy ra: d(A; (SCD)) = AH

Þ d(AB,CM) = AH

Tam giác SAD vuông tại A, AH SD, H SD, suy ra:

\[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} = \frac{1}{{{{\left( {a\sqrt 3 } \right)}^2}}} + \frac{1}{{{a^2}}} = \frac{4}{{3{a^2}}}\]

\[A{H^2} = \frac{{3{a^2}}}{4} \Rightarrow AH = \frac{{a\sqrt 3 }}{2}\]

Vậy khoảng cách giữa 2 đường thẳng CM và AB là \[\frac{{a\sqrt 3 }}{2}\].

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a. Góc giữa CA’ và mặt (AA’B’B) bằng 30o. Tính thể tích khối lăng trụ ABC.A’B’C’.

Xem lời giải »


Câu 6:

Cho khối lăng trụ tam giác ABC.A′B′C′ có thể tích là V. Gọi I, J lần lượt là trung điểm hai cạnh AA′ và BB′. Tính thể tích của khối đa diện ABCIJC′.

Xem lời giải »


Câu 7:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng: AD.AB = AE.AC = HC.HB.

Xem lời giải »


Câu 8:

Cho tam giác ABC có G là trọng tâm. So sánh diện tích tam giác AGB, BGC và CGA.

Xem lời giải »