Cho hình chóp tứ giác đều S.ABCD có SA= căn 11 a, côsin của góc hợp bởi hai mặt
Câu hỏi:
Cho hình chóp tứ giác đều S.ABCD có , côsin của góc hợp bởi hai mặt phẳng (SBC); và (SCD) bằng . Tính thể tích của khối chóp S.ABCD.
Trả lời:
Gọi x là độ dài cạnh đáy của chóp đều S.ABCD.
Gọi O = AC Ç BD Þ SO ^ (ABCD)
Ta có:
Trong (SBC) kẻ BH ^ SC (H Î SC) có:
•
•
Ta dễ dàng chứng minh được: ∆BHC = ∆DHC
Þ HB = HD Þ ∆HBD cân tại H
Xét tam giác SBC ta có:
Xét tam giác BDH có:
+) TH1:
Û 440x2a2 = 396x2a2 − 9x4
Û 9x4 = −44x2a2 (vô nghiệm)
+) TH2:
Û 440x2a2 = 484x2a2 − 11x4
Û 11x4 = 44x2a2
Û x2 = 4a2
Û x = 2a
Xét tam giác vuông SOA có:
.
Vậy .
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tính giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3].
Xem lời giải »
Câu 2:
Tìm giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [1; 2].
Xem lời giải »
Câu 4:
Hàm số y = cos 2x nghịch biến trên khoảng nào sau đây (k Î ℤ).
Xem lời giải »
Câu 5:
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng:
Xem lời giải »
Câu 6:
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số có hai tiệm cận ngang.
Xem lời giải »
Câu 7:
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và đáy ABC là tam giác vuông tại B, AB = a, SA = a. Gọi H là hình chiếu của A trên SB. Tính khoảng cách giữa AH và BC.
Xem lời giải »
Câu 8:
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC). . Tam giác ABC vuông cân tại B và AB = a (minh họa như hình vẽ bên). Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng:
Xem lời giải »