X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hình nón đỉnh S, góc ở đỉnh bằng 120°, đáy là hình tròn (O; 3R). Cắt hình


Câu hỏi:

Cho hình nón đỉnh S, góc ở đỉnh bằng 120°, đáy là hình tròn (O; 3R). Cắt hình nón bởi mặt phẳng qua S và tạo với đáy góc 60°. Diện tích thiết diện là:

A. \(2\sqrt 2 {R^2}\)

B. \(4\sqrt 2 {R^2}\)

C. \(6\sqrt 2 {R^2}\)

D. \(8\sqrt 2 {R^2}\).

Trả lời:

Đáp án đúng là: B

Cho hình nón đỉnh S, góc ở đỉnh bằng 120°, đáy là hình tròn (O; 3R). Cắt hình  (ảnh 1)

Thiết diện qua trục là tam giác SMN \( \Rightarrow \widehat {MSN} = 120^\circ \Rightarrow \widehat {OSN} = 60^\circ \)

Ta có: \(SO = \frac{{ON}}{{\tan 60^\circ }} = \frac{{3R}}{{\sqrt 3 }} = R\sqrt 3 \)

Cho hình nón đỉnh S, góc ở đỉnh bằng 120°, đáy là hình tròn (O; 3R). Cắt hình  (ảnh 2)

Vì (SAB) tạo với đáy góc 60°\( \Rightarrow \widehat {SHO} = 60^\circ \)

Ta có: \(OH = \frac{{SO}}{{\tan 60^\circ }} = \frac{{R\sqrt 3 }}{{\sqrt 3 }} = R\)

Vì tam giác SOH vuông tại O nên

\({\rm{S}}{O^2} + O{H^2} = S{H^2} \Leftrightarrow {(R\sqrt 3 )^2} + {R^2} = S{H^2} \Leftrightarrow SH = 2R\)

Vì tam giác BOH vuông tại H nên

\(O{H^2} + H{B^2} = O{B^2} \Leftrightarrow H{B^2} = {(3R)^2} - {R^2} \Leftrightarrow HB = 2R\sqrt 2 \)

\( \Rightarrow AB = 2HB = 4R\sqrt 2 \)

Ta có: \({S_{SAB}} = \frac{1}{2}.SH.AB = \frac{1}{2}.2R.4R\sqrt 2 = 4\sqrt 2 .{R^2}\)

Vậy ta chọn đáp án B.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong khôn gian với hệ tọa độ Oxyz, cho các điểm A(2; 0; 0), B(0; 3; 0), C(0; 0; –4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:

Xem lời giải »


Câu 2:

Từ các số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên chẵn gồm 5 chữ số đôi một khác nhau, đồng thời chia hết cho 9.

Xem lời giải »


Câu 3:

Bất phương trình nào sau đây tương đương với bất phương trình x + 5 > 0?

Xem lời giải »


Câu 4:

Cho hàm số f(x) có bảng biến thiên như sau:

Số nghiệm thuộc đoạn [-pi; 2pi] của phương trình 2f(sinx) + 3 = 0 là: A. 4 B. 6 C. 3 (ảnh 1)

Số nghiệm thuộc đoạn [–π; 2π] của phương trình 2f(sinx) + 3 = 0 là:

Xem lời giải »


Câu 5:

Cho hình chữ nhật ABCD có AB = 4 và AD = 3. Thể tích của khối trụ được tạo thành khi quay hình chữ nhật ABCD quanh cạnh AB bằng:

Xem lời giải »


Câu 6:

Cho hình thang vuông ABCD có đáy lớn AB = 4a, đáy nhỏ CD = 2a, đường cao AD = 3a; I là trung điểm của AD. Khi đó \(\left( {\overrightarrow {IA} + \overrightarrow {IB} } \right).\overrightarrow {I{\rm{D}}} \) bằng:

Xem lời giải »


Câu 7:

Cho hình thoi ABCD có AC = 8 và BD = 6. Tính \(\overrightarrow {AB} .\overrightarrow {AC} \).

Xem lời giải »


Câu 8:

Cho tam giác ABC vuông tại A, \(BC = a\sqrt 3 \), M là trung điểm của BC và có \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{{{a^2}}}{2}\). Tính cạnh AB, AC.

Xem lời giải »