Xét các số thực a; b thỏa mãn a > b > 1. Tìm giá trị nhỏ nhất Pmin của biểu thức
Câu hỏi:
Xét các số thực a; b thỏa mãn a > b > 1. Tìm giá trị nhỏ nhất Pmin của biểu thức: \(P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\frac{a}{b}\).
A. 19
B. 13
C. 14
D. 15.
Trả lời:
Đáp án đúng là: D
Ta có:
\({\log _{\frac{a}{b}}}\left( {{a^2}} \right) = 2{\log _{\frac{a}{b}}}a = \frac{2}{{{{\log }_a}\frac{a}{b}}} = \frac{2}{{{{\log }_a}a - {{\log }_a}b}} = \frac{2}{{1 - {{\log }_a}b}}\)
\({\log _b}\frac{a}{b} = {\log _b}a - {\log _b}b = \frac{1}{{{{\log }_a}b}} - 1\)
Suy ra:
\(P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\frac{a}{b} = {\left( {\frac{2}{{1 - {{\log }_a}b}}} \right)^2} + 3\left( {\frac{1}{{{{\log }_a}b}} - 1} \right) = \frac{4}{{{{\left( {1 - {{\log }_a}b} \right)}^2}}} + \frac{3}{{{{\log }_a}b}} - 3\)
Đặt t = logab; t ∈ (0; 1)
Suy ra \(P = f\left( t \right) = \frac{4}{{{{\left( {1 - t} \right)}^2}}} + \frac{3}{t} - 3\)
\(f'\left( t \right) = \frac{8}{{{{\left( {1 - t} \right)}^3}}} - \frac{3}{{{t^2}}} = \frac{{3{t^3} - {t^2} + 9t - 3}}{{{t^2}{{\left( {1 - t} \right)}^3}}}\)
\(\begin{array}{l}f'\left( t \right) = 0 \Leftrightarrow 3{t^3} - {t^2} + 9t - 3 = 0\\ \Leftrightarrow \left( {3t - 1} \right)\left( {{t^2} + 3} \right) = 0\\ \Leftrightarrow 3t - 1 = 0\\ \Leftrightarrow t = \frac{1}{3}\end{array}\)
Suy ra \(\mathop {\min }\limits_{\left( {0;1} \right)} f\left( t \right) = f\left( {\frac{1}{3}} \right) = 15\)
Vậy ta chọn đáp án D.