Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của BC, BD. (P) là mp qua IJ
Câu hỏi:
Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của BC, BD. (P) là mp qua IJ và cắt AC, AD lần lượt tại N, M. Chứng minh tứ giác IJMN là hình thang. Nếu M là trung điểm AD thì tứ giác IJMN là hình gì?
Trả lời:
Ba mặt phẳng (ACD) , ( BCD) , (P) đôi một cắt nhau theo các giao tuyến CD, IJ, MN.
Vì IJ // CD ( IJ là đường trung bình của tam giác BCD) nên theo định lí 2 ta có IJ // MN.
Vậy tứ giác IJNM là hình thang.
Nếu M là trung điểm của AC thì N là trung điểm của AD.
Khi đó tứ giác IJNM có một cặp cạnh đối vừa song song vừa bằng nhau nên là hình bình hành.