X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tứ giác lồi ABCD có AB = BC = CD = a, góc BAD = 75 độ, góc ADC = 45 độ


Câu hỏi:

Cho tứ giác lồi ABCD có AB = BC = CD = a, \(\widehat {BAD} = 75^\circ ;\widehat {ADC} = 45^\circ \). Tính độ dài AD?

Trả lời:

Cho tứ giác lồi ABCD có AB = BC = CD = a, góc BAD = 75 độ, góc ADC = 45 độ (ảnh 1)

Xét \({T_{\overrightarrow {BC} }}\left( A \right) = A'\)

Khi đó: CA' = BA = CD, suy ra tam giác CA'D cân tại C'

\(\widehat {A'CD} = 60^\circ \) ∆CA'D đều

\(\widehat {A'DA} = 15^\circ \)và AA' = BC = CD = A'D = a

\(\widehat {AA'D} = 150^\circ \)

Do đó: AD2 = 2A\('\)A2 – 2A\('\)Acos\(\widehat {AA'D}\) = 2a2 + \(\sqrt 3 {a^2}\)

Suy ra: AD = \(a\sqrt {2 + \sqrt 3 } \).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Cho đường tròn tâm O đường kính AB. Gọi H là trung điểm của OB, MN là dây cung bất kì qua H. Vẽ dây AA' vuông góc với MN. Lấy I là trung điểm của MN, BI cắt AA' tại D. Chứng minh:

a) Tứ giác DMNB là hình bình hành.

b) D là trung điểm của AA'.

Xem lời giải »


Câu 6:

Cho đường tròn (O; R) đường kính AB cố định. Dây CD di động vuông góc với AB tại H giữa A và O. Lấy điểm F thuộc cung AC nhỏ; BF cắt CD tại E, AF cắt tia DC tại I.

1. Chứng minh: tứ giác AHEF nội tiếp.

2. Chứng minh: HA.HB = HE.HI.

3. Đường tròn nội tiếp tam giác IEF cắt AE tại M. Chứng minh M thuộc đường tròn (O; R).

4. Tìm vị trí của H trên OA để tam giác OHD có chu vi lớn nhất.

Xem lời giải »


Câu 7:

Cho đường tròn (O; R), đường kính AB. Trên đường tròn (O) lấy điểm D sao cho AD > BD, D khác A và B. Kẻ OH vuông góc với AD tại H, tia OH cắt tiếp tuyến Ax của đường tròn (O) tại C.

a) Chứng minh H là trung điểm của AD và OH.OC = R².

b) Gọi E là giao điểm của BC và đưởng tròn (O). Chứng minh bốn điểm A, H, E, C cùng thuộc một đường tròn và CD là tiếp tuyến của đường tròn (O).

Xem lời giải »


Câu 8:

Giải phương trình: \[\sqrt {2{x^2} + 11x + 19} + \sqrt {2{x^2} + 5x + 7} = 3\left( {x + 2} \right)\].

Xem lời giải »