X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Có 6 chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 6 học sinh, gồm 3


Câu hỏi:

Có 6 chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 6 học sinh, gồm 3 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C, ngồi vào hàng ghế đó, sao cho mỗi ghế có đúng một học sinh. Xác suất để học sinh lớp C chỉ ngồi cạnh học sinh lớp B bằng

A. \(\frac{1}{6}\)

B. \(\frac{3}{{20}}\)

C. \(\frac{2}{{15}}\)

D. \(\frac{1}{5}\).

Trả lời:

Đáp án đúng là: D

Đánh số thứ tự các ghế như sau: 1; 2; 3; 4; 5; 6

Số cách xếp ngẫu nhiên 6 học sinh vào 6 chiếc ghế là 6! = 720 cách 

Suy ra n(Ω) = 720

Gọi A là biến cố: “Học sinh lớp C chỉ ngồi cạnh học sinh lớp B”

TH1: Học sinh lớp C ngồi giữa 2 học sinh lớp B, ta coi B-C-B là 1 buộc, có 2 cách xếp 2 học sinh lớp B trong buộc này

Số cách xếp buộc B-C-B vào 6 chiếc ghế là 4 cách (Xếp vào các vị trí 1-2-3, 2-3-4, 3-4-5, 4-5-6)

Số cách xếp 3 học sinh còn lại là 3! = 6 cách

Suy ra có 2 . 4 . 6 = 48 cách

TH2: Học sinh lớp C ngồi ghế 1 hoặc 6 

Suy ra có 2 cách

Ứng với mỗi cách xếp học sinh C có 2 cách chọn 1 học sinh B ngồi ở vị trí 2 hoặc 5.

Xếp 4 học sinh còn lại có 4! = 24 cách

Suy ra có 2 . 2 . 24 = 96 cách

Do đó n(A) = 48 + 96 = 144

Xác suất cần tìm là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{144}}{{720}} = \frac{1}{5}\)

Vậy ta chọn đáp án D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình thang  cân, AD = 2AB = 2CD = 2a. Hai mặt phẳng (SAB) và (SAD)  cùng vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt  là trung điểm của SB và CD (tham khảo hình vẽ bên). Tính sin góc giữa MN và (SAC), biết thể tích khối chóp S.ABCD  bằng \(\frac{{{a^3}\sqrt 3 }}{4}\).

Cho hình chóp S.ABCD có đáy ABCD là hình thang  cân, AD = 2AB = 2CD = 2a (ảnh 1)

Xem lời giải »


Câu 2:

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:

Xem lời giải »


Câu 3:

Có bao nhiêu giá trị nguyên dương của m để hàm số y = ln(x3 – 3m2x + 72m) xác định trên (0; +∞).

Xem lời giải »


Câu 4:

Số nghiệm của phương trình \({\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\) là:

Xem lời giải »


Câu 5:

Gieo đồng tiền hai lần. Số phần tử của biến cố để mặt ngửa xuất hiện đúng 1 lần là:

Xem lời giải »


Câu 6:

Một hình trụ có bán kính đáy R = 70 cm, chiều cao hình trụ h = 20 cm. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

Xem lời giải »


Câu 7:

Cho tam giác ABC với A(3; m), B(m + 1; –4). Tìm m để diện tích tam giác OAB đạt giá trị nhỏ nhất.

Xem lời giải »


Câu 8:

Tìm tất cả các giá trị của m để phương trình 3x = mx + 1 có hai nghiệm phân biệt.

Xem lời giải »