X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Giải bất phương trình thì có được nhân chéo hay không Ví dụ (x + 1 + căn bậc hai a


Câu hỏi:

Giải bất phương trình thì có được nhân chéo hay không? Ví dụ \(\frac{{a + 1 + \sqrt a }}{{\sqrt a - 1}}\)> 1 nhân chéo được không?

Trả lời:

Giải bất phương trình thì không nhân chéo được trừ khi biết rõ dấu của biếu thức.

\(\frac{{a + 1 + \sqrt a }}{{\sqrt a - 1}}\)> 1

\(\frac{{a + 1 + \sqrt a }}{{\sqrt a - 1}} - 1 > 0\)(điều kiện: a ≥ 0 ; a ≠ 1)

\(\frac{{a + 1 + \sqrt a - \sqrt a + 1}}{{\sqrt a - 1}} > 0\)

\(\frac{{a + 2}}{{\sqrt a - 1}} > 0\)

\(\left[ \begin{array}{l}\left\{ \begin{array}{l}a + 2 > 0\\\sqrt a - 1 > 0\end{array} \right.\\\left\{ \begin{array}{l}a + 2 < 0\\\sqrt a - 1 < 0\end{array} \right.\end{array} \right.\)

\(\left[ \begin{array}{l}a > 1\\a < - 2\end{array} \right.\)

Kết hợp với điều kiện xác định: a > 1

Vậy a > 1.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Cho a, b, c là số dương thỏa mãn a + b + c = 3. Chứng minh rằng

a2b + b2c + c2a ≥ \(\frac{{9{a^2}{b^2}{c^2}}}{{1 + 2{a^2}{b^2}{c^2}}}\).

Xem lời giải »


Câu 6:

Cho các chữ số 0;1;2;3;4;5. Từ các chữ số này ta có thể lập được bao nhiêu số có 3 chữ số khác nhau từng đôi một và chia hết cho 9 ?

Xem lời giải »


Câu 7:

Cho hình chóp S.ABCD, có đáy ABCD là hình vuông. SA = SC; SB = SD; O = AC giao BD.

a) Chứng minh: SO vuông góc với mặt phẳng (ABCD).

b) Chứng minh: BD vuông góc với (SAC) và AC vuông góc với mặt phẳng (SBD).

c) Chứng minh: (SBD) vuông góc với (SAC); (SBD) vuông góc với (ABCD).

Xem lời giải »


Câu 8:

Cho hình chóp tứ giác đều cạnh đáy bằng a, SB = 2a. Tính thể tích khối cầu ngoại tiếp hình chóp?

Xem lời giải »