Giải phương trình: 4sin^3 x + 3cos^3 x - 3sin x - sin2 xcos x = 0
Câu hỏi:
Giải phương trình: 4sin3 x + 3cos3 x – 3sin x – sin2 xcos x = 0.
Trả lời:
• Trường hợp 1: cos x = 0 \[ \Leftrightarrow x = \frac{\pi }{2} + k\pi \,\,\,(k \in \mathbb{Z})\].
Khi đó sin2 x = 1 ⇔ sin x = ±1
Thay sin x = 1vào phương trình ta có: 4.1− 3.0 − 3.1 − 1.0 = 0 ⇔ 1 = 0 (vô lý)
\[ \Rightarrow x = \frac{\pi }{2} + k\pi \,\,\,(k \in \mathbb{Z})\]không là nghiệm của phương trình.
• Trường hợp 2: cos x ≠ 0 \[ \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \,\,\,\,(k \in \mathbb{Z})\]
Chia cả 2 vế của phương trình cho cos3 x ta được:
\[4\frac{{si{n^3}x}}{{co{s^3}x}} + 3 - 3\frac{{sinx}}{{cosx}}\frac{1}{{co{s^{_2}}x}} - \frac{{si{n^2}x}}{{co{s^2}x}} = 0 \Leftrightarrow 4ta{n^3}x + 3 - 3tanx(1 + ta{n^2}x) - ta{n^2}x = 0\]
⇔ 4tan3 x + 3 − 3tan x − 3tan3 x − tan2 x = 0 ⇔ tan3 x − tan2 x − 3tan x + 3 = 0
⇔ tan2 x(tan x − 1) − 3(tan x − 1) = 0 ⇔ (tan x − 1)(tan2 x − 3) = 0
\[ \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\tan x = \sqrt 3 \\\tan x = - \sqrt 3 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k\pi \\x = \frac{\pi }{3} + k\pi \\x = - \frac{\pi }{3} + k\pi \end{array} \right.\]
Vậy \[x = \frac{\pi }{4} + k\pi \]hoặc \[x = \pm \frac{\pi }{3} + k\pi \].