X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Giải phương trình: 4sin^3 x + 3cos^3 x - 3sin x - sin2 xcos x = 0


Câu hỏi:

Giải phương trình: 4sin3 x + 3cos3 x – 3sin x – sin2 xcos x = 0.

Trả lời:

• Trường hợp 1: cos x = 0 \[ \Leftrightarrow x = \frac{\pi }{2} + k\pi \,\,\,(k \in \mathbb{Z})\].

Khi đó sin2 x = 1 sin x = ±1

Thay sin x = 1vào phương trình ta có: 4.1− 3.0 − 3.1 − 1.0 = 0 1 = 0 (vô lý)

 \[ \Rightarrow x = \frac{\pi }{2} + k\pi \,\,\,(k \in \mathbb{Z})\]không là nghiệm của phương trình.

Trường hợp 2: cos x ≠ 0 \[ \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \,\,\,\,(k \in \mathbb{Z})\]

Chia cả 2 vế của phương trình cho cos3 x ta được:

\[4\frac{{si{n^3}x}}{{co{s^3}x}} + 3 - 3\frac{{sinx}}{{cosx}}\frac{1}{{co{s^{_2}}x}} - \frac{{si{n^2}x}}{{co{s^2}x}} = 0 \Leftrightarrow 4ta{n^3}x + 3 - 3tanx(1 + ta{n^2}x) - ta{n^2}x = 0\]

4tan3 x + 3 − 3tan x − 3tan3 x − tan2 x = 0 tan3 x − tan2 x − 3tan x + 3 = 0

tan2 x(tan x − 1) − 3(tan x − 1) = 0 (tan x − 1)(tan2 x − 3) = 0

\[ \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\tan x = \sqrt 3 \\\tan x = - \sqrt 3 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k\pi \\x = \frac{\pi }{3} + k\pi \\x = - \frac{\pi }{3} + k\pi \end{array} \right.\]

Vậy \[x = \frac{\pi }{4} + k\pi \]hoặc \[x = \pm \frac{\pi }{3} + k\pi \].

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Rút gọn biểu thức: \[3\sqrt 5 a - \sqrt {20} a + 4\sqrt {45} a + \sqrt a \] với a ≥ 0.

Xem lời giải »


Câu 6:

Rút gọn biểu thức: \[5\sqrt {\frac{1}{5}} + \frac{1}{{20}}\sqrt {20} + \sqrt 5 \].

Xem lời giải »


Câu 7:

Cho tam giác đều ABC cạnh a quay xung quanh đường cao AH tạo nên một hình nón. Tính diện tích xung quanh của hình nón đó.

Xem lời giải »


Câu 8:

Hình trụ có bán kính đáy bằng a, chu vi của thiết diện qua trục bằng 10a. Tính thể tích của khối trụ đã cho.

Xem lời giải »