Giải phương trình: căn bậc hai (5x^2 + 4x) - căn bậc hai (x^2 - 3x - 18) = 5 căn bậc hai
Câu hỏi:
Giải phương trình: \[\sqrt {5{x^2} + 4x} - \sqrt {{x^2} - 3x - 18} = 5\sqrt x \].
Trả lời:
Điều kiện: x ≥ 6
\[\sqrt {5{x^2} + 4x} - \sqrt {{x^2} - 3x - 18} = 5\sqrt x \]
\[ \Leftrightarrow \left( {\sqrt {5{x^2} + 4x} - 21} \right) - \left( {\sqrt {{x^2} - 3x - 18} - 6} \right) = 5\sqrt x - 15\]
\[ \Leftrightarrow \frac{{5{x^2} + 4x - 441}}{{\sqrt {5{x^2} + 4x} + 21}} - \frac{{{x^2} - 3x - 18 - 36}}{{\sqrt {{x^2} - 3x - 18} + 6}} = \frac{{25x - 225}}{{5\sqrt x + 15}}\]
\[ \Leftrightarrow \frac{{(x - 9)(5x + 49)}}{{\sqrt {5{x^2} + 4x} + 21}} - \frac{{(x - 9)(x + 6)}}{{\sqrt {{x^2} - 3x - 18} + 6}} - \frac{{25(x - 9)}}{{5\sqrt x + 15}} = 0\]
\[ \Leftrightarrow (x - 9)\left( {\frac{{5x + 49}}{{\sqrt {5{x^2} + 4x} + 21}} - \frac{{x + 6}}{{\sqrt {{x^2} - 3x - 18} + 6}} - \frac{{25}}{{5\sqrt x + 15}}} \right) = 0\]
Dễ thấy \[\frac{{5x + 49}}{{\sqrt {5{x^2} + 4x} + 21}} - \frac{{x + 6}}{{\sqrt {{x^2} - 3x - 18} + 6}} - \frac{{25}}{{5\sqrt x + 15}} > 0\]
Þ x – 9 = 0
Û x = 9 (TM)
Vậy x = 9.