X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Gọi M, N là giao điểm của đường thẳng y = x + 1 và đường cong y = (2x + 4)


Câu hỏi:

Gọi M, N là giao điểm của đường thẳng y = x + 1 và đường cong \(y = \frac{{2x + 4}}{{x - 1}}\). Tìm hoành độ trung điểm I của đoạn thẳng MN.

Trả lời:

Xét phương trình hoành độ giao điểm \(x + 1 = \frac{{2x + 4}}{{x - 1}}\;\left( {x \ne 1} \right)\)

Þ x2 − 1 = 2x + 4

Û x2 − 2x − 5 = 0

\( \Leftrightarrow \left[ \begin{array}{l}{x_N} = 1 + \sqrt 6 \\{x_M} = 1 - \sqrt 6 \end{array} \right.\)

Hoành độ trung điểm I của MN là:

\({x_I} = \frac{{{x_M} + {x_N}}}{2} = \frac{{\left( {1 - \sqrt 6 } \right) + \left( {1 + \sqrt 6 } \right)}}{2} = 1\).

Vậy hoành độ trung điểm I của MN là 1.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số f (x) đồng biến trên khoảng (a; b). Mệnh đề nào sau đây sai?

Xem lời giải »


Câu 2:

Cho hàm số y = f (x) có đạo hàm trên khoảng (a; b). Mệnh đề nào sau đây sai?

Xem lời giải »


Câu 3:

Cho hình chóp S.ABCD. Gọi M, N, P, Q lần lượt là trung điểm của SA, SB, SC, SD. Tỉ số thể tích của khối chóp S.MNPQ và khối chóp S.ABCD bằng:

Xem lời giải »


Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M và N theo thứ tự là trung điểm của SA và SB. Tính tỉ số thể tích \(\frac{{{V_{S.CDMN}}}}{{{V_{S.CDAB}}}}\).

Xem lời giải »


Câu 5:

Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \({2^{2x + 4}} - {3^{{x^2}}}\,.\,m = 0\) có hai nghiệm thực phân biệt?

Xem lời giải »


Câu 6:

Có bao nhiêu giá trị nguyên của m để phương trình 22x + 1 − 2x + 3 − 2m = 0 có hai nghiệm phân biệt?

Xem lời giải »


Câu 7:

Cho hàm số y = −x4 + 2x2 + 3. Mệnh đề nào sau đây là đúng?

Xem lời giải »


Câu 8:

Cho hàm số y = x4 − 2x2 + 1. Xét các mệnh đề sau đây

(1) Hàm số có 3 điểm cực trị;

(2) Hàm số đồng biến trên các khoảng (−1; 0); (1; +∞);

(3) Hàm số có 1 điểm cực trị;

(4) Hàm số nghịch biến trên các khoảng (−∞;1); (0; 1).

Có bao nhiêu mệnh đề đúng trong bốn mệnh đề trên?

Xem lời giải »