X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Ông Bình đặt thợ làm một bể cá, nguyên liệu bằng kính trong suốt, không có


Câu hỏi:

Ông Bình đặt thợ làm một bể cá, nguyên liệu bằng kính trong suốt, không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được 220500cm3 nước. Biết tỉ lệ giữa chiều cao và chiều rộng của bể bằng 3. Xác định diện tích đáy của bể cá để tiết kiệm nguyên vật liệu nhất.

A. 2220cm2

B. 1880cm2

C. 2100cm2

D. 2200cm2

Trả lời:

Đáp án C

Gọi a, b, c >0 lần lượt là chiều rộng, dài, cao của hình hộp chữ nhật.

Theo đề V=abc=220500 và c=3a3a2b=220500ab=73500a

Ta có Stp=ab+2ac+2bc=ab+6a2+6ab=7ab+6a2

=514500a+6a2=642875a+42875a+a2Stp=642875a+42875a+a26.342875a.42875a.a23=22050

Suy ra Stp nhỏ nhất khi 42875a=a2a=35b=60S=2100cm2

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Với mỗi số thực x, gọi f(x) là giá trị nhỏ nhất trong các số g1x=4x+1,g2x=x+2,g3x=2x+4. Giá trị lớn nhất của f(x) trên R là:

Xem lời giải »


Câu 2:

Biết rằng đồ thị của hàm số y=P(x)=x32x25x+2 cắt trục hoành tại ba điểm phân biệt lần lượt có hoành độ là x1,x2,x3. Khi đó giá trị của biểu thức T=1x124x1+3+1x224x2+3+1x324x3+3 bằng:

Xem lời giải »


Câu 3:

Cho hàm số y = f(x) có bảng biến thiên như sau:

Đồ thị hàm số y=fx2017+2018 có bao nhiêu điểm cực trị?

Xem lời giải »


Câu 4:

Cô An đang ở khách sạn A bên bờ biển, cô cần đi du lịch đến hòn đảo C. Biết rằng khoảng cách từ đảo C đến bờ biển là 10km, khoảng cách từ khách sạn A đến điểm B trên bờ gần đảo C nhất là 50km. Từ khách sạn A, cô An có thể đi đường thủy hoặc đi đường bộ rồi đi đường thủy đến hòn đảo C (như hình vẽ). Biết rằng chi phí đi đường thủy là 5USD/km, chi phí đi đường bộ là 3USD/km. Hỏi cô An phải đi đường bộ một khoảng bao nhiêu km để chi phí là nhỏ nhất.

Xem lời giải »


Câu 5:

Cho hàm số y=x42mx2+m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến với đồ thị (C) tại A cắt đường tròn γ:x2+y12=4 tạo thành một dây cung có độ dài nhỏ nhất

Xem lời giải »


Câu 6:

Cho hàm số f(x) có đồ thị hàm đường cong (C), biết đồ thị của f'(x) như hình vẽ:

Tiếp tuyến của (C ) tại điểm có hoành độ bằng 1 cắt đồ thị (C ) tại hai điểm A, B phân biệt lần lượt có hoành độ a, b. Chọn khẳng định đúng trong các khẳng định sau:

Xem lời giải »


Câu 7:

Cho hàm số y=xm33x+m2 có đồ thị là Cm với m là tham số thực. Biết điểm M(a; b) là điểm cực đại của Cm ứng với một giá trị m thích hợp, đồng thời là điểm cực tiểu của Cm ứng với một giá trị khác của m. Tổng S=2018a+2020b bằng:

Xem lời giải »


Câu 8:

Gọi d là đường thẳng đi qua A(2;0) có hệ số góc m cắt đồ thị y=x3+6x29x+2 tại 3 điểm phân biệt A, B, C. Gọi B’, C’ lần lượt là hình chiếu vuông góc của B, C lên trục tung. Tìm giá trị dương của m để hình thang BB’C’C có diện tích bằng 8.

Xem lời giải »