X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Rút gọn biểu thức P = (x + 2) / (x căn bậc hai x - 1) + (căn bậc hai x + 1) / (x + căn bậc hai x + 1)


Câu hỏi:

Rút gọn biểu thức P = \(\frac{{x + 2}}{{x\sqrt x - 1}} + \frac{{\sqrt x + 1}}{{x + \sqrt x + 1}} - \frac{1}{{\sqrt x + 1}}\), với x ≥ 0; x ≠ 1.

Trả lời:

P = \(\frac{{x + 2}}{{x\sqrt x - 1}} + \frac{{\sqrt x + 1}}{{x + \sqrt x + }} - \frac{1}{{\sqrt x + 1}}\)

P = \(\frac{{x + 2 + \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right) - \left( {x + \sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\)

P = \(\frac{{x + 2 + x - 1 - x - \sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\)

P = \(\frac{{x - \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\)

P = \(\frac{{\sqrt x \left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\)

P = \(\frac{{\sqrt x }}{{x + \sqrt x + 1}}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho A, B, C nằm trên đường thẳng xy theo thứ tự đó. Vẽ đường tròn (O) đi qua B và C. Từ điểm A, vẽ hai tiếp tuyến AM; AN. Gọi E và F lần lượt là trung điểm của BC và MN.

a) Chứng minh AM2 = AN2 = AB.AC.

b) ME cắt (O) tại I. Chứng minh IN // AB.

c) Chứng minh tâm đường tròn ngoại tiếp tam giác OEF nằm trên 1 đường thẳng cố định khi (O) thay đổi nhưng luôn đi qua B và C.

Xem lời giải »


Câu 2:

Chứng minh rằng 4n3 + 9n2 – 19n – 30 chia hết cho 6 (n ℤ).

Xem lời giải »


Câu 3:

Bạn An nghĩ ra một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1, 2, 3 và chữ số tận cùng là số chẵn.

Xem lời giải »


Câu 4:

Cho dãy số (un) với un = 2n + 3. Dãy số này có phải cấp số cộng không?

Xem lời giải »


Câu 5:

Giải phương trình:

\(\frac{{x - 10}}{{1994}} + \frac{{x - 8}}{{1996}} + \frac{{x - 6}}{{1998}} + \frac{{x - 4}}{{2000}} + \frac{{x - 2}}{{2002}} = \frac{{x - 2002}}{2} + \frac{{x - 2000}}{4} + \frac{{x - 1998}}{6} + \frac{{x - 1996}}{8} + \frac{{x - 1994}}{{10}}\)

Xem lời giải »


Câu 6:

Tìm m để phương trình 6x + (3 – m)2x – m = 0 có nghiệm thuộc khoảng (0; 1).

Xem lời giải »


Câu 7:

Cho hình thang vuông ABCD, biết \(\widehat A = \widehat D = 90^\circ \), lấy điểm M thuộc cạnh DC, ∆BMC là tam giác đều. Số đo \(\widehat {ABC}\) là:

Xem lời giải »


Câu 8:

Cho hình vuông ABCD. M, N, P, Q là trung điểm các cạnh AB, BC, CD, DA. Tính SMNPQ theo SABCD?

Xem lời giải »