Rút gọn biểu thức P = (x + 2) / (x căn bậc hai x - 1) + (căn bậc hai x + 1) / (x + căn bậc hai x + 1)
Câu hỏi:
Rút gọn biểu thức P = \(\frac{{x + 2}}{{x\sqrt x - 1}} + \frac{{\sqrt x + 1}}{{x + \sqrt x + 1}} - \frac{1}{{\sqrt x + 1}}\), với x ≥ 0; x ≠ 1.
Trả lời:
P = \(\frac{{x + 2}}{{x\sqrt x - 1}} + \frac{{\sqrt x + 1}}{{x + \sqrt x + }} - \frac{1}{{\sqrt x + 1}}\)
P = \(\frac{{x + 2 + \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right) - \left( {x + \sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\)
P = \(\frac{{x + 2 + x - 1 - x - \sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\)
P = \(\frac{{x - \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\)
P = \(\frac{{\sqrt x \left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\)
P = \(\frac{{\sqrt x }}{{x + \sqrt x + 1}}\).