Rút gọn: F = căn bậc hai của 3 + căn bậc hai của 5 + căn bậc hai của 7 - 3 căn bậc hai của 5 - căn bậc hai của 2
Câu hỏi:
Rút gọn: \[F = \sqrt {3 + \sqrt 5 } + \sqrt {7 - 3\sqrt 5 } - \sqrt 2 \].
Trả lời:
Lời giải
Ta có \[F = \sqrt {3 + \sqrt 5 } + \sqrt {7 - 3\sqrt 5 } - \sqrt 2 \]
\[ \Rightarrow \sqrt 2 .F = \sqrt 2 \,.\,\left( {\sqrt {3 + \sqrt 5 } + \sqrt {7 - 3\sqrt 5 } - \sqrt 2 } \right)\]
\[ = \sqrt {6 + 2\sqrt 5 } + \sqrt {14 - 6\sqrt 5 } - 2\]
\[ = \sqrt {{{\sqrt 5 }^2} + 2\sqrt 5 + 1} + \sqrt {{3^2} - 2\,.\,3\sqrt 5 + {{\sqrt 5 }^2}} - 2\]
\[ = \sqrt {{{\left( {\sqrt 5 + 1} \right)}^2}} + \sqrt {{{\left( {3 - \sqrt 5 } \right)}^2}} - 2\]
\[ = \left| {\sqrt 5 + 1} \right| + \left| {3 - \sqrt 5 } \right| - 2\]
\[ = \sqrt 5 + 1 + 3 - \sqrt 5 - 2\]
= 2
Vậy \(F = \frac{2}{{\sqrt 2 }} = \sqrt 2 \).
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hệ bất phương trình sau, biểu diễn hình học tập nghiệm:
\[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]
Xem lời giải »
Câu 2:
Biểu diễn miền nghiệm của của bất phương trình hai ẩn 2x − y ≥ 0.
Xem lời giải »
Câu 3:
Cho phương trình 5sin 2x + sin x + cos x + 6 = 0. Trong các phương trình sau, phương trình nào tương đương với phương trình đã cho?
Xem lời giải »
Câu 4:
Chứng minh phương trình sau đây vô nghiệm:
5sin 2x + sin x + cos x + 6 = 0.
Xem lời giải »
Câu 5:
Chứng minh các đẳng thức sau:
a) \(\left( {\frac{{2\sqrt 3 - \sqrt 6 }}{{\sqrt 8 - 2}} - \frac{{\sqrt {216} }}{3}} \right)\,\,.\,\frac{1}{{\sqrt 6 }} = - 1,5\)
b) \(\left( {\frac{{\sqrt {14} - \sqrt 7 }}{{1 - \sqrt 2 }} + \frac{{\sqrt {15} - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\frac{1}{{\sqrt 7 - \sqrt 5 }} = - 2\)
c) \[\frac{{a\sqrt b + b\sqrt a }}{{\sqrt {ab} }}:\frac{1}{{\sqrt a - \sqrt b }} = a - b\] với a, b dương và a ¹ b
d) \[\left( {1 + \frac{{a + \sqrt a }}{{\sqrt a + 1}}} \right)\left( {1 - \frac{{a - \sqrt a }}{{\sqrt a - 1}}} \right) = 1 - a\] với a ³ 0; a ¹ 0
Xem lời giải »
Câu 8:
Tính b, c biết \(\frac{a}{b} = \frac{b}{c} = \frac{c}{a},\;a = 2005\) và a + b + c ¹ 0. Xem lời giải »