X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hai đường thẳng d và d’ song song có bao nhiêu phép tịnh tiến biến đường


Câu hỏi:

Cho hai đường thẳng d và d’ song song có bao nhiêu phép tịnh tiến biến đường thẳng d thành đường thẳng d’:

A. Không có phép tịnh tiến nào.

B. Có duy nhất một phép tịnh tiến.

C. Có 2 phép tịnh tiến.

D. Có vố số phép tịnh tiến.

Trả lời:

Đáp án đúng là: D

Lấy 1 điểm A bất kì thuộc d và 1 điểm B bất kì nằm trên đường thẳng d’

Khi đó, tịnh tiến theo \(\overrightarrow {AB} \) biến đường thẳng d thành d’

Vì A; B là bất kì nên có vô số phép tịnh tiến thỏa mãn 

Vậy ta chọn đáp án D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong khôn gian với hệ tọa độ Oxyz, cho các điểm A(2; 0; 0), B(0; 3; 0), C(0; 0; –4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:

Xem lời giải »


Câu 2:

Từ các số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên chẵn gồm 5 chữ số đôi một khác nhau, đồng thời chia hết cho 9.

Xem lời giải »


Câu 3:

Bất phương trình nào sau đây tương đương với bất phương trình x + 5 > 0?

Xem lời giải »


Câu 4:

Cho hàm số f(x) có bảng biến thiên như sau:

Số nghiệm thuộc đoạn [-pi; 2pi] của phương trình 2f(sinx) + 3 = 0 là: A. 4 B. 6 C. 3 (ảnh 1)

Số nghiệm thuộc đoạn [–π; 2π] của phương trình 2f(sinx) + 3 = 0 là:

Xem lời giải »


Câu 5:

Cho \(\widehat {xOy} = 30^\circ \). Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB = 1. Độ dài lớn nhất của đoạn OB bằng:

Xem lời giải »


Câu 6:

Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Gọi E, F lần lượt là trung điểm của AB, BC. Đẳng thức nào sau đây sai?

Xem lời giải »


Câu 7:

Cho hình lăng trụ đứng ABC. A’B’C’ có đáy ABC là tam giác vuông tại B, \(\widehat {ACB} = 60^\circ \), cạnh BC = a, đường chéo A’B tạo với mặt phẳng (ABC) một góc 30°. Thể tích khối lăng trụ đứng ABC. A’B’C’ là:

Xem lời giải »


Câu 8:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Có bao nhiêu vectơ khác \(\overrightarrow 0 \) cùng phương với \(\overrightarrow {MN} \)có điểm đầu và điểm cuối lấy trong các điểm đã cho.

Xem lời giải »