Cho hai tập khác rỗng A = (m - 1; 4]; B = (-2; 2m + 2), m thuộc R. Tìm m để A
Câu hỏi:
Cho hai tập khác rỗng A = (m – 1; 4]; B = (–2; 2m + 2), m ∈ ℝ. Tìm m để A ∩ B ≠ ∅.
A. –2 < m < 5
B. m > –3
C. –1 < m < 5
D. 1 < m < 5.
Trả lời:
Đáp án đúng là: A
Vì A, B là tập hợp khác rỗng nên \(\left\{ {\begin{array}{*{20}{l}}{m - 1 < 4}\\{2m + 2 > - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m < 5}\\{m > - 2}\end{array}} \right.} \right. \Leftrightarrow - 2 < m < 5\)
Để \(A \cap B = \emptyset \Leftrightarrow 2m + 2 \le m - 1 \Leftrightarrow m \le - 3\) (không thỏa điều kiện –2 < m < 5)
Do đó không có giá trị nào của m để A ∩ B = ∅
Vậy với mọi \(m \in ( - 2;5)\) thì A ∩ B ≠ ∅
Phương án B sai vì học sinh không tìm điều kiện
Phương án C sai vì học sinh giải sai \(m - 1 > - 2 \Leftrightarrow m > - 1\) và kết hợp với điều kiện
Phương án D sai vì học sinh giải sai \(4 < 2m + 2 \Leftrightarrow m > 1\). Kết hợp với điều kiện
Vậy đáp án cần chọn là A.