X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm GTNN của biểu thức A = (6x + 1) / (12x^2 + 1)


Câu hỏi:

Tìm GTNN của biểu thức A = \(\frac{{6x + 1}}{{12{x^2} + 1}}\).

Trả lời:

Đặt f(x) = \(\frac{{6x + 1}}{{12{x^2} + 1}}\)

\[f'\left( x \right) = \frac{{6\left( {12{x^2} + 1} \right) - \left( {6x + 1} \right).24x}}{{{{\left( {12{x^2} + 1} \right)}^2}}} = \frac{{ - 72{x^2} - 24x + 6}}{{{{\left( {12{x^2} + 1} \right)}^2}}}\]

Xét f'(x) = 0 suy ra: –72x2 – 24x + 6 = 0

–24x2 – 4x + 1 = 0

\(\left[ \begin{array}{l}x = \frac{1}{6}\\x = \frac{{ - 1}}{2}\end{array} \right.\)

 Ta có bảng biến thiên:

Tìm GTNN của biểu thức A = (6x + 1) / (12x^2 + 1) (ảnh 1)

Vậy GTNN của A là \(\frac{{ - 1}}{2}\) khi x = \(\frac{{ - 1}}{2}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Viết phương trình đường thẳng đi qua điểm M(2;1) và cắt Ox, Oy tại 2 điểm A, B sao cho tam giác OAB có diện tích nhỏ nhất.

Xem lời giải »


Câu 6:

Xác định a, b, c biết parabol y = ax2 + bx + c Đi qua ba điểm A(0 ; –1), B(1 ; –1), C(–1; 1).

Xem lời giải »


Câu 7:

Đặt tính phép chia 16250 : 125.

Xem lời giải »


Câu 8:

Cho tam giác ABC nội tiếp đường tròn (O). Tiếp tuyến tại A cắt BC ở I.

a) Chứng minh: \(\frac{{IB}}{{IC}} = \frac{{A{B^2}}}{{A{C^2}}}\).

b) Tính IA, IC bắt rằng AB = 20 cm, AC = 28 cm, BC = 24 cm.

Xem lời giải »