X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Viết phương trình đường thẳng đi qua điểm M(2;1) và cắt Ox, Oy tại 2 điểm A


Câu hỏi:

Viết phương trình đường thẳng đi qua điểm M(2;1) và cắt Ox, Oy tại 2 điểm A, B sao cho tam giác OAB có diện tích nhỏ nhất.

Trả lời:

Ta có: A, B là giao điểm của d với Ox, Oy nên gọi A (a; 0), B(0; b) (a > 2; b > 1).

Phương trình d theo đoạn chắn là: \(\frac{x}{a} + \frac{y}{b} = 1\)

Do M thuộc d nên ta có: \(\frac{2}{a} + \frac{1}{b} = 1\left( 1 \right)\)

Mặt khác SOAB = \(\frac{1}{2}.OA.OB = \frac{1}{2}\left| {ab} \right| = \frac{1}{2}ab\)

Để diện tích OAB nhỏ nhất thì ab nhỏ nhất

Ta có: \(1 = \frac{2}{a} + \frac{1}{b} \ge 2\sqrt {\frac{2}{a}.\frac{1}{b}} \) \[\frac{2}{{ab}} \le \frac{1}{4}\] ab ≥8 (2)

Vậy diện tích OAB nhỏ nhất khi ab = 8

Từ (1) và (2) ta có hệ:

\(\left\{ \begin{array}{l}\frac{2}{a} + \frac{1}{b} = 1\\ab = 8\end{array} \right.\)\(\left\{ \begin{array}{l}2b + a = ab = 8\\ab = 8\end{array} \right.\)\(\left\{ \begin{array}{l}a = 8 - 2b\\2{b^2} - 8b + 8 = 0\end{array} \right.\)\(\left\{ \begin{array}{l}a = 4\\b = 2\end{array} \right.\)

Vậy phương trình đường thẳng cần tìm là: \(\frac{x}{4} + \frac{y}{2} = 1\) hay x + 2y – 4 = 0.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Xác định a, b, c biết parabol y = ax2 + bx + c Đi qua ba điểm A(0 ; –1), B(1 ; –1), C(–1; 1).

Xem lời giải »


Câu 6:

Đặt tính phép chia 16250 : 125.

Xem lời giải »


Câu 7:

Cho tam giác ABC nội tiếp đường tròn (O). Tiếp tuyến tại A cắt BC ở I.

a) Chứng minh: \(\frac{{IB}}{{IC}} = \frac{{A{B^2}}}{{A{C^2}}}\).

b) Tính IA, IC bắt rằng AB = 20 cm, AC = 28 cm, BC = 24 cm.

Xem lời giải »


Câu 8:

Hình chữ nhật ABCD có diện tích 1500 m2. Tính diện tích tam giác AED.
Hình chữ nhật ABCD có diện tích 1500 m2. Tính diện tích tam giác AED (ảnh 1)

Xem lời giải »