Cho dãy số (un) bởi: u1 = 1 và un+1 = 5un + 8 với mọi n > = 1. a) Chứng minh rằng
Câu hỏi:
Cho dãy số (un) bởi: u1 = 1 và un+1 = 5un + 8 với mọi n ≥ 1.
a) Chứng minh rằng dãy số (vn) với vn = un +2 là một cấp số nhân.
b) Dựa vào kết quả phần a) hãy tìm số hạng tổng quát của dãy số (un).
Trả lời:
Ta có: un+1 = 5un + 8
vn = un + 2
Suy ra: vn+1 = un+1 + 2 = 5un + 8 + 2 = 5un + 10 = 5(un + 2) = 5vn (*)
Vậy vn là cấp số nhân với công bội q = 5.
b) Từ (*) ta có:
v1 = u1 + 2 = 1 + 2 = 3
v2 = 5v1 = 5.3 = 15
…
vn = 5vn–1
Số hạng tổng quát của vn là: vn = u1.qn–1 = 3.5n–1
⇒ un = vn – 2 = 3.5n–1 – 2.