Cho parabol (P): y = x^2 và đường thẳng (d): y = 2mx - 2m + 3
Câu hỏi:
Cho parabol (P): y = x2 và đường thẳng (d): y = 2mx – 2m + 3
a. Khi m = \(\frac{1}{2}\). Xác định tọa độ giao điểm của (d) và (P)
b. Gọi A(x1,y1) và B(x2,y2) là các giao điểm của (d) và (P). Tìm các giá trị của m để y1 + y2 < 9
Trả lời:
a) Xét phương trình hoành độ giao điểm:
x2 = 2mx – 2m + 3
⇔ x2 – 2mx + 2m – 3 = 0
Thay m = \(\frac{1}{2}\) ta được:
x2 – x – 2 = 0
⇔ \(\left[ \begin{array}{l}x = 2\\x = - 1\end{array} \right.\)⇔\(\left[ \begin{array}{l}y = 4\\y = 1\end{array} \right.\)
Vậy giao điểm của (d) và (P) là (2;4) và (–1;1)
b) x2 – 2mx + 2m – 3 = 0 (*)
∆' = m2 –2m + 3 = (m – 1)2 + 2 > 0 với mọi m
Suy ra: Phương trình (*) luôn có 2 nghiệm phân biệt
Theo hệ thức Vi – ét ta có:
\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}.{x_2} = 2m - 3\end{array} \right.\)
\(\left\{ \begin{array}{l}{y_1} = {x_1}^2\\{y_2} = {x_2}^2\end{array} \right.\)
Lại có: y1 + y2 < 9
⇔ x12 +x22 < 9
⇔ (x1 + x2)2 – 2x1x2 < 9
⇔ (2m)2 – 2(2m– 3) < 9
⇔ 4m2 – 4m + 6 < 9
⇔ 4m2 – 4m + 1 < 4
⇔ (2m – 1)2 < 4
⇔ –2 < 2m – 1 < 2
⇔ \(\frac{{ - 1}}{2} < m < \frac{3}{2}\)
Vậy \(\frac{{ - 1}}{2} < m < \frac{3}{2}\)