X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn


Câu hỏi:

cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O) cắt AB và AC lần lượt tại M và N.

a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau.

b) Tính \(\widehat {MON}\) biết \(\widehat {BAC} = 40^\circ \).

Trả lời:

cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn  (ảnh 1)

a) Ta có OM = OB = ON = OC

Suy ra ∆OBM và ∆OCN cân tại O mà ABC cân tại A nên \(\widehat {ABC} = \widehat {ACB}\)

Xét ∆OBM và ∆OCN có:

OM = ON

\(\widehat {MBO} = \widehat {NCO}\)

BO = OC

Suy ra: ∆OBM = ∆OCN (c.g.c)

Suy ra: \(\widehat {MOB} = \widehat {NOC}\)(đpcm)

b) Vì ABC cân tại A nên \(\widehat {ABC} = \widehat {ACB} = \left( {180^\circ - 40^\circ } \right):2 = 70^\circ \)

nên \(\widehat {MOB} = \widehat {NOC} = 70^\circ \)

\(\widehat {MON} = 180^\circ - \left( {\widehat {MOB} + \widehat {NOC}} \right) = 180^\circ - \left( {40^\circ + 40^\circ } \right) = 100^\circ \).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho A, B, C nằm trên đường thẳng xy theo thứ tự đó. Vẽ đường tròn (O) đi qua B và C. Từ điểm A, vẽ hai tiếp tuyến AM; AN. Gọi E và F lần lượt là trung điểm của BC và MN.

a) Chứng minh AM2 = AN2 = AB.AC.

b) ME cắt (O) tại I. Chứng minh IN // AB.

c) Chứng minh tâm đường tròn ngoại tiếp tam giác OEF nằm trên 1 đường thẳng cố định khi (O) thay đổi nhưng luôn đi qua B và C.

Xem lời giải »


Câu 2:

Chứng minh rằng 4n3 + 9n2 – 19n – 30 chia hết cho 6 (n ℤ).

Xem lời giải »


Câu 3:

Bạn An nghĩ ra một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1, 2, 3 và chữ số tận cùng là số chẵn.

Xem lời giải »


Câu 4:

Cho dãy số (un) với un = 2n + 3. Dãy số này có phải cấp số cộng không?

Xem lời giải »


Câu 5:

Cho tam giác ABC có BC = 3cm và đường cao AH = 4 cm, khi đó diện tích tam giác ABC là?

Xem lời giải »


Câu 6:

Cho tam giác ABC Từ D trên cạnh AB, kẻ đường thẳng song song với BC cắt AC tại E. Trên tia đối của tia CA, lấy điểm F sao cho CF = DB. Gọi M là giao điểm của DF và BC. Chứng minh \(\frac{{DM}}{{MF}} = \frac{{AC}}{{AB}}\).

Xem lời giải »


Câu 7:

Có bao nhiêu số tự nhiên có 5 chữ số dạng \(\overline {abcde} \) thỏa mãn a ≤ b ≤ c ≤ d ≤ e?

Xem lời giải »


Câu 8:

Cho ∆ABC vuông tại A (AB < AC). Kẻ BD là phân giác của \(\widehat {ABD}\) (D thuộc AC), trên cạnh BC lấy điểm E sao cho AB = BE.

a) Chứng minh ∆ABD = ∆EBD.

b) So sánh AD và DC.

c) Đường thẳng ED cắt đường thẳng AB tại F, gọi S là trung điểm của FC. Chứng minh ba điểm B, D, S thẳng hàng.

Xem lời giải »