X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm tất cả các giá trị thực của tham số m để hàm số y=tanx-2/tanx-m+1


Câu hỏi:

Tìm tất cả các giá trị thực của tham số m để hàm số y=tanx2tanxm+1  đồng biến trên khoảng 0;π4 .

A. m1;+

B. m3;+

C. m2;3

D. m;12;3.

Trả lời:

Đặt t=tanx , với x0;π4t0;1.

Hàm số trở thành  yt=t2tm+1y't=3mtm+12

Ta có t'=1cos2x>0, x0;π4 , do đó t=tanx  đồng biến trên 0;π4 .

Do đó YCBT yt  đồng biến trên khoảng (0;1) y't>0,  t0;1

3m>0tm+10,t0;13m>0m1t,t0;13m>0m10;1m12m<3

Chọn D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số y=fx  xác định và có đạo hàm trên  Khẳng định nào sau đây là sai?

Xem lời giải »


Câu 2:

Cho hàm số fx  xác định trên a;b , với x1, x2  bất kỳ thuộc a;b. Khẳng định nào sau đây là đúng?

Xem lời giải »


Câu 3:

Khẳng định nào sau đây là đúng?

Xem lời giải »


Câu 4:

Cho hàm số fx  có đạo hàm trên a;b.Khẳng định nào sau đây là sai?

Xem lời giải »


Câu 5:

Tìm tất cả các giá trị thực của m để hàm số y=sinx+msinx1  nghịch biến trên khoảng π2;π .

Xem lời giải »


Câu 6:

Tìm tất cả các giá trị thực của tham số m để hàm số y=2cosx+32cosxm  nghịch biến trên khoảng 0;π3.  

Xem lời giải »


Câu 7:

Tìm tất các các giá trị thực của tham số m để hàm số y=x2mx11x  nghịch biến trên các khoảng xác định.

Xem lời giải »


Câu 8:

Biết rằng hàm số y=2x+asinx+bcosx  đng biến trên R. Mệnh đề nào sau đây là đúng?

Xem lời giải »