X

Các dạng bài tập Toán lớp 12

Cho hàm số y = f (x) có đạo hàm liên tục trên [0;1] và thỏa mãn


Câu hỏi:

Cho hàm số y = f (x) có đạo hàm liên tục trên [0;1] và thỏa mãn f1=0;01f'x2dx=01x+1exfxdx=e214. Tính 01fxdx

A. e2

B. e-12

C. e24

D. e2 

Trả lời:

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho f(x) liên tục trên R và f2=16,01f2xdx=2. Tích phân 02xf'xdx bằng

Xem lời giải »


Câu 2:

Cho fx=xcos2x trên π2;π2 và F(x) là một nguyên hàm của hàm số xf(x) thỏa mãn F(0)=0. Biết aπ2;π2 thỏa mãn tana=3. Tính Fa10a2+3a

Xem lời giải »


Câu 3:

Xét hàm số f(x) liên tục trên đoạn [0;1] và thỏa mãn điều kiện 4x.fx2+3f1x=1x2. Tích phân I=01fxdx bằng

Xem lời giải »


Câu 4:

Cho hàm số f(x) thỏa mãn f2=15 và f'x=x3fx2 với mọi xR. Giá trị của f(1) bằng

Xem lời giải »


Câu 5:

Cho hai hàm số fx=ax3+bx2+cx+34gx=dx2+ex34a,b,c,dR. Biết rằng đồ thị của hàm số y=f(x) và y=g(x) cắt nhau tại ba điểm có hoành độ lần lượt là –2; 1; 3 (tham khảo hình vẽ). Hình phẳng giới hạn bởi đồ thị đã cho có diện tích bằng:

Xem lời giải »