Top 50 bài tập Ứng dụng của tích phân trong hình học (mới nhất)
Haylamdo biên soạn và sưu tầm 50 bài tập Ứng dụng của tích phân trong hình học Toán 12 mới nhất được biên soạn bám sát chương trình Toán 12 giúp các bạn học tốt môn Toán hơn.
Bài tập Ứng dụng của tích phân trong hình học
Câu 1:
Viết công thức tính thể tích V của khối tròn xoay được tạo ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a, x = b (a < b) quanh trục Ox
A.
B.
C.
D.
Câu 2:
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và đồ thị hàm số
A.
B.
C.
D. 13
Câu 3:
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số , trục tung và đường thẳng y = 0. Tính thể tích của khối tròn xoay thu được khi quay hình (H) quanh trục Ox
A.
B.
C.
D.
Câu 4:
Sau chiến tranh thế giới thứ hai, tốc độ sinh ở cả nước phương Tây tăng rất nhanh. Giả sử rằng tốc độ sinh được cho bởi: b(t) = 5 + 2t, 0 ≤ t ≤ 10 , ( ở đó t số năm tính từ khi chiến tranh kết thúc, b(t) tính theo đơn vị triệu người). Có bao nhiêu trẻ được sinh trong khoảng thời gian này ( tức là trong 10 năm đầu tiên sau chiến tranh)?
A. 100 triệu
B. 120 triệu
C. 150 triệu
D. 250 triệu
Câu 5:
Sau chiến tranh thế giới thứ hai, tốc độ sinh ở cả nước phương Tây tăng rất nhanh. Giả sử rằng tốc độ sinh được cho bởi: b(t) = 5 + 2t, 0 ≤ t ≤ 10 , ( ở đó t số năm tính từ khi chiến tranh kết thúc, b(t) tính theo đơn vị triệu người). Tìm khoảng thời gian T sao cho số lượng trẻ được sinh ra là 14 triệu kể từ khi kết thức chiến tranh.
A. 1 năm
B. 2 năm
C. 3 năm
D. 4 năm
Câu 7:
Cho đồ thị hàm số y = f(x). Diện tích hình phẳng ( phần gạch sọc ) là:
A.
B.
C.
D.
Câu 8:
Diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành, đường thẳng x = -1 và đường thẳng x = -2 là:
A.
B.
C.
D.
Câu 9:
Diện tích hình phẳng giới hạn bởi đồ thị hai hàm số và y = 6 - x và trục tung là
A.
B.
C.
D.
Câu 10:
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành, đường thẳng x = -1 và đường thẳng x = 1.
A.
B. 0
C.
D.
Câu 11:
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục hoành.
A. 1
B.
C.
D.
Câu 12:
Gọi h(t) (cm) là mức nước ở bồn chứa sau khi bơm nước được t giây. Biết rằng và lúc đầu bồn không có nước. Mức nước ở bồn sau khi bơm nước được 6 giây xấp xỉ bằng:
A. 2,65cm
B. 2,66cm
C. 2,67cm
D. 2,68cm.
Câu 13:
Vận tốc của một vật chuyển động là (m/s). Quãng đường vật di chuyển trong khoảng thời gian 1,5 giây xấp xỉ bằng:
A. 0,33m
B. 0,34m
C. 0,35m
D. 0,36m
Câu 14:
Thể tích phần vật thể giới hạn bởi hai mặt phẳng x = 0 và x = 3 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x(0 ≤ x ≤ 3) là một hình chữ nhật có hai kích thước là x và
A.
B. 18
C.
D.
Câu 15:
Thể tích khối xoay khi quay quanh trục hoành một hình phẳng giới hạn bởi đồ thị hàm số y = x(x-4) và trục hoành là:
A.
B.
C.
D.
Câu 16:
Thể tích khối tròn khi quay quanh trục hoành một hình phẳng giới hạn bởi đồ thị hàm số là:
A.
B.
C.
D.
Câu 17:
Thể tích khối tròn xoay khi quay quanh trục tung một hình phẳng giới hạn bởi hình tròn tâm I(2;0) bán kính R = 1 là:
A.
B.
C.
D.
Câu 1:
Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), đường thẳng y = 0 và hai đường thẳng x = a, x = b (a < b) là:
A.
B.
C.
D.
Câu 2:
Cho hàm số y = f(x) liên tục trên [a; b]. Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a; x = b được tính theo công thức
A.
B.
C.
D.
Câu 3:
Cho hàm số y = f(x) liên tục trên [a; b]. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b (a < b) là:
A.
B.
C.
D.
Câu 4:
Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số trục hoành và hai đường thẳng x = −1; x = −3 là:
A.
B.
C.
D.
Câu 5:
Hình phẳng giới hạn bởi đồ thị hàm số y = f(x) liên tục trên đoạn [1;3], trục Ox và hai đường thẳng x = 1, x = 3 có diện tích là:
A.
B.
C.
D.
Câu 6:
Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y = g(x) và hai đường thẳng x = a, x = b (a < b) là:
A.
B.
C.
D.
Câu 7:
Cho hàm số y = f(x), y = g(x) liên tục trên [a; b]. Gọi (H) là hình phẳng giới hạn bởi hai đồ thị y = f(x), y = g(x) và các đường thẳng x = a, x = b. Diện tích (H) được tính theo công thức?
A.
B.
C.
D.
Câu 8:
Cho hai hàm số và . Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x), y = g(x) và hai đường thẳng x = 0, x = e là:
A.
B.
C.
D.
Câu 9:
Diện tích hình phẳng giới hạn bởi hai đường thẳng x = 0, x = π, đồ thị hàm số y = cosx và trục Ox là
A.
B.
C.
D.
Câu 10:
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng x = 1; x = 3?
A. 19
B.
C. 20
D. 18
Câu 11:
Cho hình (H) giới hạn bởi đồ thị hàm số y = f (x), trục hoành và hai đường thẳng x = a, x = b. thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Ox là:
A.
B.
C.
D.
Câu 12:
Cho hình (H) giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng x = 0, x = 1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Ox được tính bởi:
A.
B.
C.
D.
Câu 13:
Gọi (D) là hình phẳng giới hạn bởi các đường . Thể tích V của khối tròn xoay tạo thành khi quay (D) quanh trục Ox được xác định bởi công thức:
A.
B.
C.
D.
Câu 14:
Cho hàm số y = f (x) liên tục trên đoạn (a;b) và . Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f (x), trục hoảnh và 2 đường thẳng x = a, x = b (a < b). Thể tích vật thể tròn xoay khi quay D quanh Ox được tính theo công thức:
A.
B.
C.
D.
Câu 15:
Cho hàm số y = f (x) liên tục và có đồ thị như hình bên. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số đã cho và trục Ox. Quay hình phẳng D quanh trục Ox ta được khối tròn xoay có thể tích V được xác định theo công thức:
A.
B.
C.
D.
Câu 1:
Diện tích S của hình phẳng giới hạn bởi các đường và trục hoành được tính bằng công thức nào dưới đây?
A.
B.
C.
D.
Câu 2:
Diện tích hình phẳng giới hạn bởi các đồ thị hàm số và các đường thẳng x = −1; x = 1 được xác định bởi công thức:
A.
B.
C.
D.
Câu 3:
Diện tích hình phẳng được giới hạn bởi đồ thị hàm số , trục hoành, hai đường thẳng x = −2; x = 3 có công thức tính là
A.
B.
C.
D.
Câu 4:
Cho hình phẳng (H) giới hạn bởi đồ thị hàm số , trục hoành, đường thẳng x = −2 và đường thẳng x = 1. Diện tích của hình phẳng (H) bằng
A.
B.
C.
D.
Câu 5:
Gọi S là diện tích hình phẳng (H) giới hạn bởi các đường y = f(x), trục hoành và hai đường thẳng x = −1, x = 2 (như hình vẽ). Đặt . Mệnh đề nào sau đây đúng?
A. S = b-a
B. S = b+a
C. S = -b+a
D. S = -b-a
Câu 6:
Cho hàm số y = f(x) liên tục trên đoạn [a; b] và cắt trục hoành tại điểm x = c (a < c < b) (như hình vẽ bên). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a; x = b. Mệnh đề nào dưới đây đúng?
A.
B.
C.
D.
Câu 7:
Cho hàm số y = f(x). Xác định công thức tính diện tích S của hình phẳng (phần gạch chéo) trong hình:
A.
B.
C.
D.
Câu 8:
Cho hàm số và liên tục trên [a; b] và có đồ thị như hình bên. Gọi S là hình phẳng giới hạn bới hai đồ thị trên và các đường thẳng x = a, x = b . Mệnh đề nào sau đây đúng?
A.
B.
C.
D.
Câu 9:
Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây?
A.
B.
C.
D.
Câu 10:
Gọi S là diện tích hình phẳng giới hạn bởi các đường và . Mệnh đề nào sau đây là đúng?
A.
B.
C.
D.
Câu 12:
Cho hình (H) giới hạn bởi đường cong , trục Oy và hai đường thẳng y = 0, y = 1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi:
A.
B.
C.
D.
Câu 13:
Thể tích vật thể tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường quanh trục Ox có giá trị là kết quả nào sau đây?
A.
B.
C.
D.
Câu 14:
Cho hình phẳng (H) giới hạn bởi và Ox. Thể tích khối tròn xoay sinh ra khi quay (H) quanh Ox bằng
A.
B.
C.
D.
Câu 15:
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số , trục tung và trục hoảnh. Tính thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox
A. V = 4-2e
B.
C.
D.
Câu 1:
Gọi V là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường và x=4 quanh trục Ox. Đường thẳng x=a (0<a<4) cắt đồ thị hàm số tại M. Gọi là thể tích khối tròn tạo thành khi quay quanh tam giác OMH quanh trục Ox. Biết rằng . Khi đó:
A.
B.
C. a = 2
D. a = 3
Câu 2:
Thể tích khối tròn xoay thu được khi quay quanh trục Ox: hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và đường thẳng x = 1 là:
A.
B.
C.
D.
Câu 3:
Một khung cửa kính hình parabol với đỉnh M và cạnh đáy AB như minh họa ở hình bên. Biết chi phí để lắp phần kính màu (phần tô đậm trong hình) là và phần kính trắng còn lại là . Cho MN = AB = 4m và MC = CD = DN. Hỏi số tiền để lắp kính cho khung cửa như trên gần nhất với số tiền nào dưới đây?
A. 1.954.000 đồng
B. 2.123.000 đồng
C. 1.946.000 đồng
D. 2.145.000 đồng
Câu 4:
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số trục tung và trục hoành. Xác định k để đường thẳng (d) đi qua điểm A (0; 4) và có hệ số góc k chia (H) thành hai phần có diện tích bằng nhau.
A. k = - 8
B. k = - 6
C. k = - 2
D. k = - 4
Câu 5:
Diện tích hình phẳng của phần tô đậm trong hình vẽ bên được tính theo công thức nào dưới đây?
A.
B.
C.
D.
Câu 6:
Gọi (H) là hình phẳng giới hạn bởi các đường cong . Diện tích của (H) bằng:
A.
B.
C.
D.
Câu 9:
Diện tích hình phẳng giới hạn với đường cong và trục hoành Ox là
A. 0
B. 16
C. 4
D. 8
Câu 10:
Cho hình phẳng (H) giới hạn bởi trục hoành, đồ thị của một parabol và một đường thẳng tiếp xúc parabol đó tại điểm A(2;4), như hình vẽ bên. Tính thể tích khối tròn xoay tạo bởi hình phẳng (H) khi quay xung quanh trục Ox
A.
B.
C.
D.
Câu 12:
Cho hàm số (với m là tham số khác 0) có đồ thị là (C). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị (C) và hai trục tọa độ. Có bao nhiêu giá trị thực của m thỏa mãn S = 1?
A. Hai
B. Ba
C. Một
D. Không
Câu 13:
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ
Diện tích hai phần A và B lần lượt là và . Tính
A.
B.
C.
D.
Câu 14:
Cho vật thể có mặt đáy là hình nón bán kính bằng 1 (hình vẽ). Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x thì thiết diện là một tam giác đều. Tính thể tích V của vật thể đó.
A.
B.
C.
D.
Câu 15:
Tính thể tích của vật thể nằm giữa hai mặt phẳng x = - 1 và x = 1, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox có hoành độ x là một tam giác vuông cân với cạnh huyền bằng
A.
B.
C. 1
D.
Câu 1:
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3, biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và
A.
B.
C.
D.
Câu 2:
Thể tích vật thể nằm giữa hai mặt phẳng x = 0 và x = 2, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x là một nửa đường tròn đường kính bằng:
A.
B.
C.
D.
Câu 3:
Cho hình phẳng giới hạn bởi . Thể tích vật tròn xoay khi D quay quanh trục Ox là: với . Tính
A. T = 6
B. T = 9
C. T = 12
D. T = 3
Câu 4:
Tính thể tích vật thể có đáy là một hình tròn giới hạn bởi đường tròn có phương trình và mỗi thiết diện vuông góc với trục Ox là một hình vuông (tham khảo hình bên)
A.
B.
C.
D.
Câu 5:
Cho hình phẳng (H) giới hạn bởi parabol trục tung và đường thẳng x = 1. Quay (H) quanh trục Ox được một khối tròn xoay có thể tích bằng . Mệnh đề nào dưới đây đúng?
A. 2 < a < 3
B. 0 < a < 2
C. 5 < a < 8
D. 3 < a < 5
Câu 6:
Thể tích của vật tròn xoay có được khi quay hình phẳng giới hạn bởi đồ thị hàm y=tanx, trục Ox, đường thẳng x = 0, đường thẳng quanh trục Ox là:
A.
B.
C.
D.
Câu 8:
Gọi H là hình phẳng giới hạn bởi parabol và đường thẳng y = 2x. Tính thể tích V của khối tròn xoay tạo thành khi quay hình (H) quanh trục hoành
A.
B.
C.
D.
Câu 9:
Cho hai hàm số y = f(x) và y = g(x) liên tục trên đoạn [a; b] với a < b. Kí hiệu là diện tích hình phẳng giới hạn bởi các đường y = 3f(x), y = 3g(x), x = a, x = b, là diện tích hình phẳng giới hạn bởi các đường y = f(x) − 2, y = g(x) − 2, x = a, x = b. Khẳng định nào sau đây đúng?
A.
B.
C.
D.
Câu 10:
Thể tích khối tròn xoay sinh ra bởi phép quay xung quanh Ox của hình giới hạn bởi trục Ox và parabol (P): (a>0) bằng V = 2. Khẳng định nào dưới đây đúng?
A.
B.
C.
D.
Câu 11:
Cho hai hàm số và liên tục trên đoạn [a;b] và có đồ thị như hình vẽ bên. Gọi S là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng x = a, x = b. Thể tích V của vật thể tròn xoay tạo thành khi quay S quanh trục Ox được tính bởi công thức nào sau đây?
A.
B.
C.
D.
Câu 12:
Cho hai hàm số (m, n, p thuộc R) và có đồ thị cắt nhau tại ba điểm có hoành độ lần lượt là −3; −1; 1( tham khảo hình vẽ bên). Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số f(x)và g(x) bằng
A.
B.
C. 4
D. 5
Câu 13:
Sàn của một viện bảo tàng mỹ thuật được lát bằng những viên gạch hình vuông cạnh 40(cm) như hình bên. Biết rằng người thiết kế đã sử dụng các đường cong có phương trình và để tạo hoa văn cho viên gạch. Diện tích phần màu vàng gần nhất với giá trị nào dưới đây?
A. 506
B. 747
C. 507
D. 746
Câu 14:
Cho hàm số có đồ thị là (m là tham số thực). Giả sử cắt trục Ox tại 4 điểm phân biệt. Gọi là diện tích của hai hình phẳng nằm dưới trục Ox và là diện tích của hình phẳng nằm trên trục Ox được tạo bởi với trục Ox. Biết rằng tồn tại duy nhất giá trị (với a, b thuộc N* và tối giản) để . Giá trị của 2a − b bằng:
A. 3
B. -4
C. 6
D. -2
Câu 15:
Cho hình vuông ABCD tâm O, độ dài cạnh là 4cm. Đường cong BOC là một phần của parabol đỉnh O chia hình vuông thành hai hình phẳng có diện tích lần lượt là và (tham khảo hình vẽ).
Tỉ số bằng:
A.
B.
C.
D.
Câu 16:
Vườn hoa của một trường học có hình dạng được giới hạn bởi một đường elip có bốn đỉnh A, B, C, D và hai đường parabol có các đỉnh lần lượt là E, F (phần tô đậm của hình vẽ bên). Hai đường parabol có cùng trục đối xứng AB, đối xứng với nhau qua trục CD, hai parabol cắt elip tại các điểm M, N, P, Q. Biết AB = 8m, CD = 6m, , EF = 2m. Chi phí để trồng hoa trên vườn là . Hỏi số tiền trồng hoa cho cả vườn gần nhất với số tiền nào dưới đây
A. 4.477.800 đồng
B. 4.477.000 đồng
C. 4.477.815 đồng
D. 4.809.142 đồng
Câu 17:
Cho hàm số y = f(x) liên tục trên R và thỏa mãn f(−1) > 0 > f(0). Gọi S là diện tích hình phẳng giới hạn bởi các đường y = f(x), y = 0, x = 1 và x = −1. Mệnh đề nào sau đây là đúng?
A.
B.
C.
D.
Câu 18:
Cho parabol (P) có đồ thị như hình vẽ:
Tính diện tích giới hạn bởi (P) và trục hoành.
A.
B.
C. 4
D. 2
Câu 21:
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số , trục tung, trục hoành. Giá trị của k để đường thẳng d đi qua A (0; 4) có hệ số góc k chia (H) thành 2 phần có diện tích bằng nhau là
A. K = -6
B. K = -2
C. K = -8
D. K = -4
Câu 22:
Ông B có một khu vườn giới hạn bởi đường parabol và một đường thẳng. Nếu đặt trong hệ tọa độ Oxy như hình vẽ bên thì parabol có phương trình và đường thẳng là y = 25. Ông B dự định dùng một mảnh vườn nhỏ được chia từ khu vườn bởi đường thẳng đi qua O và điểm M trên parabol để trồng hoa. Hãy giúp ông B xác định điểm M bằng cách tính độ dài OM để diện tích mảnh vường nhỏ bằng 92.
A.
B.
C. OM = 15
D. OM = 10
Câu 23:
Cho (H) là hình phẳng giới hạn bởi parabol , cung tròn có phương trình (với 0 ≤ x ≤ 2) và trục hoành (phần tô đậm trong hình vẽ). Diện tích của (H) bằng
A.
B.
C.
D.
Câu 25:
Diện tích S của hình phẳng giới hạn bởi các đường được tính bởi công thức nào dưới đây?
A.
B.
C.
D.
Câu 2:
Tìm diện tích hình phẳng giới hạn bởi các đường , trục hoành, đường thẳng x = 0 và x = 1
A. S = 2 + e
B. S = 2 − e
C. S = e – 2
D. S = e − 1
Câu 5:
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và các đường thẳng x = 1, x = e
A. 2
B. e
C. e-1
D. 1
Câu 7:
Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số và y = x − 4.
A.
B.
C.
D.
Câu 8:
Cho hàm số . Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số (C) và trục hoành. Phát biểu nào sau đây đúng?
A.
B.
C. x
D.
Câu 10:
Tính diện tích hình phẳng giới hạn bởi parabol và đường thẳng y = x
A.
B.
C.
D.
Câu 12:
Hình phẳng (H) có diện tích bằng S, gấp 2 lần diện tích hình phẳng được giới hạn bởi đồ thị các hàm số . Tính diện tích S?
A.
B.
C.
D.
Câu 13:
Cho hình phẳng (H) giới hạn bởi các đường (phần tô đậm trong hình vẽ). Diện tích của (H) bằng
A.
B.
C.
D.
Câu 14:
Cho (H) là hình phẳng được tô đậm trong hình vẽ và được giới hạn bởi các đường có phương trình . Diện tích của (H) bằng?
A.
B.
C.
D.
Câu 15:
Gọi S là diện tích của Ban Công của một ngôi nhà có dạng như hình vẽ (S được giới hạn bởi parabol (P) và trục Ox). Giá trị của S là:
A.
B. S = 1
C.
D. S = 2
Câu 16:
Cho số dương a thỏa mãn điều kiện hình phẳng giới hạn bởi các đường parabol và có diện tích bằng 16. Giá trị của a bằng
A. 1
B.
C.
D. 2
Câu 17:
Ba Tí muốn làm cửa sắt được thiết kế như hình bên. Vòm cổng có hình dạng một parabol. Giá cửa sắt là 660000 đồng. Cửa sắt có giá (nghìn đồng) là:
A. 6500
B. 5500
C. 5600
D. 6050
Câu 18:
Cho đồ thị hàm số y = f(x) như hình vẽ dưới đây. Diện tích S của hình phẳng (phần gạch chéo) được xác định bởi
A.
B.
C.
D.
Câu 19:
Cho (H) là hình phẳng giới hạn bởi các đồ thị hàm số và (tham khảo hình vẽ bên). Diện tích của (H) là
A.
B.
C.
D.
Câu 20:
Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào sau đây?
A.
B.
C.
D.
Câu 22:
Vòm cửa lớn của một trung tâm văn hóa có hình parabol. Gắn parabol vào hệ trục Oxy thì nó có đỉnh (0; 8) và cắt trục hoành tại 2 điểm phân biệt, trong đó có 1 điểm là (−4; 0). Người ta dự định lắp vào cửa kính cho vòm cửa này. Hãy tính diện tích mặt kính cần lắp vào.
A.
B.
C.
D.
Câu 23:
Một cổng chào có dạng hình parabol chiều cao 18m, chiều rộng chân đế 12m. Người ta căng sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi parabol thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số bằng
A.
B.
C.
D.
Câu 24:
Người ta cần trồng hoa tại phần đắt nằm phía ngoài đường tròn tâm gốc tọa độ O, bán kính bằng và phía trong của Elip có độ dài trục lớn bằng và độ dài trục nhỏ bằng 2 (như hình vẽ bên). Trong mỗi một đơn vị diện tích cần bón kg phân hữu cơ. Hỏi cần sử dụng bao nhiêu kg phân hữu cơ để bón cho hoa?
A. 30kg
B. 40kg
C. 50kg
D. 45kg
Câu 25:
Cho hàm số và liên tục trên [a;b] và có đồ thị như hình bên. Gọi S là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng x = a, x = b. Mệnh đề nào sau đây đúng?
A.
B.
C.
D.
Câu 1:
Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường xung quanh trục Ox được tính theo công thức nào sau đây?
A.
B.
C.
D.
Câu 2:
Tính thể tích V của một vật tròn xoay tạo thành khi quay hình phẳng (H) giới hạn bởi các đường quanh trục Ox
A.
B.
C.
D.
Câu 3:
Trong mặt phẳng Oxy, cho hình phẳng (H) giới hạn bởi các đường và y = x. Thể tích của vật thể tròn xoay khi quay hình (H) quanh trục hoành một vòng bằng:
A.
B.
C.
D.
Câu 4:
Cho vật thể V được giới hạn bởi hai mặt phẳng x=a và x=b (a<b), mặt phẳng vuông góc với trục Ox cắt V theo thiết diện S(x). Thể tích của V được tính bởi:
A.
B.
C.
D.
Câu 5:
Cho vật thể V được giới hạn bởi hai mặt phẳng x = 0 và x = - 2, mặt phẳng vuông góc với trục Ox cắt V theo thiết diện . Thể tích của V được tính bởi:
A.
B.
C.
D.
Câu 6:
Viết công thức tính thể tích V của phần vật thể nằm giữa hai mặt phẳng x = 0 và x = ln4, biết khi cắt vật thể bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ x , ta được thiết diện là một hình vuông có độ dài cạnh là:
A.
B.
C.
D.
Câu 7:
Cho hình phẳng (H) giới hạn bởi các đường và y = 0. Tính thể tích của khối tròn xoay tạo thành khi quay hình (H) quanh trục Oy là:
A.
B.
C.
D.
Câu 8:
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi đường (E): quay quanh Oy?
A.
B.
C.
D.
Câu 9:
Trong mặt phẳng tọa độ Oxy, gọi là hình phẳng giới hạn bởi các đường và là hình gồm tất cả các điểm (x;y) thỏa mãn
Cho và quay quanh trục Oy ta được các vật thể có thể tích là . Đẳng thức nào sau đây đúng?
A.
B.
C.
D.
Câu 10:
Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đồ thị quay quanh trục Ox là với a, b > 0 và là phân số tối giản. Tính tổng T = a + b
A. 33
B. 31
C. 29
D. 27
Câu 11:
Gọi D là hình phẳng giới hạn bởi đồ thị hàm số , cung tròn có phương trình và trục hoành (phần tô đậm trong hình vẽ). Tính thể tích V của vật thể tròn xoay sinh bởi khi quay hình phẳng D quanh trục Ox.
A.
B.
C.
D.
Câu 12:
Gọi là hình phẳng giới hạn bởi các đường , là hình phẳng giới hạn bởi các đường . Gọi lần lượt là thể tích khối tròn xoay tạo thành khi quay và xung quanh trục Ox. Tỉ số bằng:
A.
B.
C.
D.
Câu 13:
Cho hàm số y=f(x) liên tục và nhận giá trị dương trên R. Gọi là hình phẳng giới hạn bởi đồ thị hàm số y=f(x), các đường x = 0, x = 1 và trục Ox. Gọi là hình phẳng giới hạn bởi đồ thị hàm số , các đường x = 0, x = 1 và trục Ox. Quay các hình phẳng , quanh trục Ox ta được các khối tròn xoay có thể tích lần lượt là . Khẳng định nào sau đây là đúng?
A.
B.
C.
D.
Câu 14:
Tính thể tích hình xuyến do quay hình tròn có phương trình khi quanh trục Ox
A.
B.
C.
D.
Câu 15:
Tìm thể tích V của vật tròn xoay sinh ra bởi đường tròn khi quay quanh trục Ox
A.
B.
C.
D.
Câu 16:
Trong Công viên Toán học có những mảnh đất hình dáng khác nhau. Mỗi mảnh được trồng một loài hoa và nó được tạo thành bởi một trong những đường cong đẹp nhất trong toán học. Ở đó có mảnh đất mang tên Bernoulli, nó được tạo thành từ đường Lemniscate có phương trình trong hệ tọa độ Oxy là như hình vẽ bên. Tính diện tích S của mảnh đất Bernoulli biết rằng mỗi đơn vị trong hệ trục tọa độ Oxy tương ứng với chiều dài 1 mét.
A.
B.
C.
D.
Câu 17:
Sân trường THPT Chuyên Hà Giang có một bồn hoa hình tròn có tâm O. Một nhóm học sinh lớp 12 được giao thiết kế bồn hoa, nhóm này chia bồn hoa thành bốn phần, bởi hai đường Parabol có cùng đỉnh O và đối xứng nhau qua O. Hai đường Parabol này cắt đường tròn tại bốn điểm A, B, C, D tạo thành một hình vuông có cạnh bằng 4m (như hình vẽ). Phần diện tích dùng để trồng hoa, phần diện tích dùng để trồng cỏ (Diện tích được làm tròn đến hàng phần trăm). Biết kinh phí trồng hoa là , kinh phí trồng cỏ là . Hỏi cả trường cần bao nhiêu tiền để trồng bồn hoa đó? (Số tiền làm tròn đến hàng chục nghìn).
A. 3.000.000 đồng
B. 6.060.000 đồng
C. 3.270.000 đồng
D. 5.790.000 đồng
Câu 18:
Cho hàm số (a=1) có đồ thị (C), biết rằng (C) đi qua A (−1; 0) , tiếp tuyến d tại A của (C) và hai đường thẳng x = 0; x = 2 có diện tích bằng (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x = −1; x = 0 có diện tích bằng
A.
B.
C.
D.
Câu 19:
Cho hàm số có đồ thị (C) cắt trục hoành tại 4 điểm phân biệt. Gọi là diện tích hình phẳng giới hạn bởi trục hoành và phần đồ thị (C) nằm phía trên trục hoành, là diện tích hình phẳng giới hạn bởi trục hoành và phần đồ thị (C) nằm phía dưới trục hoành. Biết rằng . Giá trị của m là
A. 1
B. 2
C.
D.
Câu 20:
Một viên gạch hoa hình vuông cạnh 40cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm của viên gạch để tạo ra bốn cánh hoa (được tô màu sẫm như hình vẽ bên). Diện tích mỗi cánh hoa của viên gạch bằng
A.
B.
C.
D.
Câu 21:
Một biển quảng cáo có dạng hình elip với bốn đỉnh như hình vẽ bên. Biết chi phí để sơn phần tô đậm là và phần còn lại là . Hỏi số tiền để sơn theo cách trên gần nhất với số tiền nào dưới đây, biết và tứ giác MNPQ là hình chữ nhật có MQ = 3m?
A. 7.322.000 đồng
B. 7.213.000 đồng
C. 5.526.000 đồng
D. 5.782.000 đồng
Câu 22:
Cho parabol và đường thẳng Biết rằng tồn tại m để diện tích hình phẳng giới hạn bởi (P) và (d) đạt giá trị nhỏ nhất, tính diện tích nhỏ nhất đó
A.
B.
C.
D.
Câu 23:
Cho hàm số f(x) có đồ thị trên đoạn [−3;3] là đường gấp khúc ABCD như hình vẽ
Tính
A.
B.
C.
D.