Tổng hợp lý thuyết Chương 4: Số phức - Toán lớp 12
Tổng hợp lý thuyết Chương 4: Số phức
Tài liệu Tổng hợp lý thuyết Chương 4: Số phức Toán lớp 12 sẽ tóm tắt kiến thức trọng tâm về Chương 4: Số phức từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 12.
- Lý thuyết Số phức
- Lý thuyết Cộng, trừ và nhân số phức
- Lý thuyết Phép chia số phức
- Lý thuyết Phương trình bậc hai với hệ số thực
- Lý thuyết tổng hợp chương Số phức
Lý thuyết Số phức
A. Tóm tắt lý thuyết
1. Phần thực và phần ảo của số phức, số phức liên hợp.
a) Số phức z là biểu thức có dạng z = a + bi (a, b ∈ R, i2 = -1) . Khi đó:
+ Phần thực của z là a, phần ảo của z là b và i được gọi là đơn vị ảo.
b) Số phức liên hợp của z là .
+ Tổng và tích của z và z− luôn là một số thực.
Đặc biệt:
+ Số phức z = a + 0i có phần ảo bằng 0 được coi là số thực và viết là z = a
+ Số phức z = 0 + bi có phần thực bằng 0 được gọi là số ảo (hay số thần ảo) và viết là
+ Số i = 0 + li = li.
+ Số: 0 = 0 + 0i vừa là số thực vừa là số ảo.
2. Số phức bằng nhau.
+ Cho hai số phức z1 = a1 + b1i, z2 + b2i (a1, a2, b1, b2 ∈ R). Khi đó:
3. Biểu diễn hình học của số phức, mô đun của số phức.
a) Biễu diễn hình học của số phức.
+ Số phức z = a + bi (a, b ∈ R) được biểu diễn bởi điểm M(a; b) trong mặt phẳng tọa độ.
+ z và z− được biểu diễn bởi hai điểm đối xứng nhau qua trục 0x.
b) Mô đun của số phức.
+ Mô đun của số phức z là .
+
Lý thuyết Cộng, trừ và nhân số phức
A. Tóm tắt lý thuyết
Cho hai số phức z1 = a + bi và z2 = c + di thì:
• Phép cộng số phức: z1 + z2 = (a + c) + (b + d)i
• Phép trừ số phức: z1 - z2 = (a - c) + (b - d)i
- Mọi số phức z = a + bi thì số đối của z là -z = -a - bi: z + (-z) = (-z) + z = 0
• Phép nhân số phức: z1.z2 = (ac - bd) + (ad + bc)i
• Phép chia số phức: (với z2 ≠ 0)
- Chú ý :
• Với mọi số thực k và mọi số phức z = a + bi thì:
k(a + b)i = ka + kbi
• Với mọi số phức: 0z = 0
• Phép cộng và phép nhân các số phức có tất cả các tính chất của phép cộng và phép nhân của số thực.
• i4k = 1; i4k + 1 = i; i4k + 2 = -1; i4k + 3 = -i
Ví dụ 1: Cho số phức z = 2 + 5i . Tìm số phức w = iz + z−.
A. w = 7 - 3i. B. w = -3 - 3i. C. w = 3 = 3i. D. w = -7 - 7i.
Hướng dẫn:
Ta có: ⇔ w = iz + z− = (-5 + 2) + (2 - 5)i = -3 - 3i.
Vậy chọn đáp án B.
Ví dụ 2: Cho số phức z = (1 - 6i) - (2 - 4i). Phần thực, phần ảo của z lần lượt là
A. -1; -2. B. 1; 2. C. 2;1. D. – 2;1.
Hướng dẫn:
Ta có : z = (1 - 6i) - (2 - 4i) = -1 -2i
Vậy chọn đáp án A.
Ví dụ 3: Cho số phức z = (2 + i)(1 - i) + 1 + 3i. Tính môđun của z.
A. 4√2. B. √13. C. 2√2. D. 2√5.
Hướng dẫn:
Ta có: z = (2 + i)(1 - i) + 1 + 3i = (2.1 + 1.1) + (-1.2 + 1.1)i + 1 + 3i = 4 + 2i
. Vậy chọn đáp án D.
Lý thuyết Phép chia số phức
A. Tóm tắt lý thuyết
Cho hai số phức z1 = a + bi và z2 = c + di thì:
- Số phức nghịch đảo của z = a + bi ≠ 0:
- (với z2 ≠ 0)
Ví dụ 1: Số phức nghịch đảo của có phần ảo là:
A. 1 B. 1/2 C. -1 D. -1/2
Hướng dẫn:
Chọn D.
Ta có:
Ví dụ 2: Phần thực của số phức bằng
A. 16/17 B. 3/4 C. -13/17 D. -3/4
Hướng dẫn:
Chọn A.
Ta có:
Ví dụ 3: Số phức có phần thực là
A. 3 B. 9/13 C. 2 D. -3
Hướng dẫn:
Chọn C.
Ta có:
⇒ Phần thực của z là: 2