Tổng hợp lý thuyết Chương 3: Nguyên hàm, Tích phân và ứng dụng - Toán lớp 12
Tổng hợp lý thuyết Chương 3: Nguyên hàm, Tích phân và ứng dụng
Tài liệu Tổng hợp lý thuyết Chương 3: Nguyên hàm, Tích phân và ứng dụng Toán lớp 12 sẽ tóm tắt kiến thức trọng tâm về Chương 3: Nguyên hàm, Tích phân và ứng dụng từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 12.
- Lý thuyết Nguyên hàm
- Lý thuyết Tích phân
- Lý thuyết Ứng dụng của tích phân trong hình học
- Lý thuyết tổng hợp chương Nguyên hàm, Tích phân và ứng dụng
Lý thuyết Nguyên hàm
A. Tóm tắt lý thuyết
I. NGUYÊN HÀM VÀ TÍNH CHẤT
1. Nguyên hàm
Định nghĩa: Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K.
Định lí:
1) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.
2) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.
Do đó F(x) + C, C ∈ R là họ tất cả các nguyên hàm của f(x) trên K. Ký hiệu ∫f(x)dx = F(x) + C
2. Tính chất của nguyên hàm
Tính chất 1: (∫f(x)dx)' = f(x) và ∫f'(x)dx = f(x) + C
Tính chất 2: ∫kf(x)dx = k∫f(x)dx với k là hằng số khác 0.
Tính chất 3: ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx
3. Sự tồn tại của nguyên hàm
Định lí: Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.
4. Bảng nguyên hàm của một số hàm số sơ cấp
II. PHƯƠNG PHÁP TÍNH NGUYÊN HÀM
1. Phương pháp đổi biến số
Định lí 1: Nếu ∫f(u)du = F(u) + C và u = u(x) là hàm số có đạo hàm liên tục thì
∫f(u(x))u'(x)dx = F(u(x)) + C
Hệ quả: Nếu u = ax + b (a ≠ 0) thì ta có ∫f(ax + b)dx = (1/a)F(ax + b) + C
2. Phương pháp nguyên hàm từng phần
Định lí 2: Nếu hai hàm số u = u(x) và y = y(x) có đạo hàm liên tục trên K thì
∫u(x)v'(x)dx = u(x)v(x) - ∫u'(x)v(x)dx
Hay ∫udv = uv - ∫vdu
B. Kĩ năng giải bài tập
- Tìm nguyên hàm bằng phương pháp biến đổi trực tiếp.
- Tìm nguyên hàm bằng phương pháp đổi biến số.
- Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần.
Lý thuyết Tích phân
A. Tóm tắt lý thuyết
1. Định nghĩa
Cho f là hàm số liên tục trên đoạn [a; b] Giả sử F là một nguyên hàm của f trên [a; b] Hiệu số F(b) - F(a) được gọi là tích phân từ a đến b (hay tích phân xác định trên đoạn [a; b] của hàm số f(x) kí hiệu là
Ta dùng kí hiệu để chỉ hiệu số F(b) - F(a). Vậy .
Nhận xét: Tích phân của hàm số f từ a đến b có thể kí hiệu bởi hay . Tích phân đó chỉ phụ thuộc vào f và các cận a, b mà không phụ thuộc vào cách ghi biến số.
Ý nghĩa hình học của tích phân: Nếu hàm số f liên tục và không âm trên đoạn [a; b] thì tích phân là diện tích S của hình thang cong giới hạn bởi đồ thị hàm số y = f(x) , trục Ox và hai đường thẳng x = a, x = b. Vậy S =
2. Tính chất của tích phân
B. Kĩ năng giải bài tập
1. Một số phương pháp tính tích phân
I. Dạng 1: Tính tích phân theo công thức
Ví dụ 1: Tính các tính phân sau:
Hướng dẫn:
II. Dạng 2: Dùng tính chất cận trung gian để tính tích phân
Sử dụng tính chất để bỏ dấu giá trị tuyệt đối.
Ví dụ 2: Tính tích phân .
Hướng dẫn:
Nhận xét: . Do đó
III. Dạng 3: Phương pháp đổi biến số
1) Đổi biến số dạng 1
Cho hàm số f liên tục trên đoạn [a; b]. Giả sử hàm số u = u(x) có đạo hàm liên tục trên đoạn [a; b] và α ≤ u(x) ≤ β. Giả sử có thể viết f(x) = g(u(x))u'(x), x ∈ [a; b] với g liên tục trên đoạn [α; β]. Khi đó, ta có
Ví dụ 3: Tính tích phân .
Hướng dẫn:
Đặt u = sinx. Ta có du = cosxdx. Đổi cận: x = 0 ⇒ u(0) = 0; x = π/2 ⇒ u(π/2) = 1
Khi đó
Dấu hiệu nhận biết và cách tính tính phân
2) Đổi biến số dạng 2
Cho hàm số f liên tục và có đạo hàm trên đoạn [a; b]. Giả sử hàm số x = φ(t) có đạo hàm và liên tục trên đoạn [α; β](*) sao cho φ(α) = a,φ(β) = b và a ≤ φ(t) ≤ b với mọi t ∈ [α; β]. Khi đó:
Một số phương pháp đổi biến: Nếu biểu thức dưới dấu tích phân có dạng
Lưu ý: Chỉ nên sử dụng phép đặt này khi các dấu hiệu 1, 2, 3 đi với x mũ chẵn. Ví dụ, để tính tích phân thì phải đổi biến dạng 2 còn với tích phân thì nên đổi biến dạng 1.
Ví dụ 4: Tính các tích phân sau:
a) Đặt x = sint ta có dx = costdt. Đổi cận: x = 0 ⇒ t = 0; x = 1 ⇒ t = π/2.
Vậy
b) Đặt x = tant, ta có dx = (1 + tan2t)dt. Đổi cận: .
Vậy
IV. Dạng 4: Phương pháp tính tích phân từng phần.
Định lí : Nếu u = u(x) và v = v(x) là hai hàm số có đạo hàm và liên tục trên đoạn [a; b] thì
hay viết gọn là . Các dạng cơ bản: Giả sử cần tính
Dạng hàm |
P(x): Đa thức Q(x): sin(kx) hay cos(kx) |
P(x): Đa thức Q(x): ekx |
P(x): Đa thức Q(x): ln(ax + b) |
P(x): Đa thức Q(x): 1/sin2x hay 1/cos2x |
Cách đặt |
* u = P(x) * dv là Phần còn lại của biểu thức dưới dấu tích phân |
* u = P(x) * dv là Phần còn lại của biểu thức dưới dấu tích phân |
* u = ln(ax + b) * dv = P(x)dx |
* u = P(x) * dv là Phần còn lại của biểu thức dưới dấu tích phân |
Thông thường nên chú ý: “Nhất log, nhì đa, tam lượng, tứ mũ”.
Ví dụ 5: Tính các tích phân sau:
Hướng dẫn:
a) Đặt
Do đó
b) Đặt