X

Các dạng bài tập Toán lớp 12

Các dạng bài tập Phương pháp tọa độ trong không gian chọn lọc, có đáp án - Toán lớp 12


Các dạng bài tập Phương pháp tọa độ trong không gian chọn lọc, có đáp án

Với Các dạng bài tập Phương pháp tọa độ trong không gian chọn lọc, có đáp án Toán lớp 12 tổng hợp các dạng bài tập, trên 200 bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Phương pháp tọa độ trong không gian từ đó đạt điểm cao trong bài thi môn Toán lớp 12.

Các dạng bài tập Phương pháp tọa độ trong không gian chọn lọc, có đáp án

Tổng hợp lý thuyết Chương Phương pháp tọa độ trong không gian

Chủ đề: Hệ tọa độ trong không gian

Chủ đề: Phương trình mặt cầu

Chủ đề: Phương trình mặt phẳng

Chủ đề: Phương trình đường thẳng trong không gian

Bài tập trắc nghiệm

Cách tìm tâm và bán kính mặt cầu

A. Phương pháp giải & Ví dụ

+ Phương trình (S): (x-a)2+(y-b)2+(z-c)2=R2 là phương trình mặt cầu (S) có tâm I (a; b; c), bán kính R

+ Phương trình (S): x2+y2+z2-2ax-2by-2cz+d=0 thỏa mãn điều kiện a2+b2+c2-d>0 là phương trình mặt cầu tâm I (a; b; c); bán kính

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ví dụ minh họa

Bài 1: Trong không gian hệ trục tọa độ Oxyz, phương trình nào sau đây là phương trình mặt cầu, nếu là phương trình mặt cầu, hãy tìm tâm và bán kính của mặt cầu đó

a) (x-2)2+(y+3)2+z2=5

b) x2+y2+z2-2x+4y-6z+1=0

c) 3x2+3y2+3z2-6x+3y+21=0

Hướng dẫn:

a) Phương trình (x-2)2+(y+3)2+z2=5 có dạng

(x-a)2+(y-b)2+(z-c)2=R2 nên là phương trình mặt cầu có tâm

I (2; -3; 0) và bán kính R=√5.

b) Phương trình x2+y2+z2-2x+4y-6z+1=0 có dạng

x2+y2+z2-2ax-2by-2cz+d=0 với a = 1; b = -2; c = 3, d = 1

⇒ a2+b2+c2-d=13>0

Vậy phương trình đã cho là phương trình mặt cầu có tâm I (1; -2; 3) và bán kính R=√13.

c) Phương trình 3x2+3y2+3z2-6x+3y+21=0

⇔ x2+y2+z2-2x+y+7=0

Phương trình có dạng x2+y2+z2-2ax-2by-2cz+d=0 với

a=1;b=(-1)/2;c=0;d=7 ⇒a2+b2+c2-d=(-23)/4<0

Vậy phương trình đã cho không phải là phương trình mặt cầu.

Bài 2: Trong không gian với hệ tọa độ Oxyz, tìm m để mỗi phương trình sau là phương trình mặt cầu.

a) x2+y2+z2-2mx+2(m+1)y-4z+1=0

b) x2+y2+z2-2(m-3)x-4mz+8=0

Hướng dẫn:

a) Phương trình x2+y2+z2-2mx+2(m+1)y-4z+1=0 có

a=m;b=-(m+1); c=2;d=1.

Phương trình là phương trình mặt cầu ⇔ a2+b2+c2-d>0

⇔ m2+(m+1)2+22-1>0⇔2m2+2m+3>0 ⇔m∈R.

b) Phương trình x2+y2+z2-2(m-3)x-4mz+8=0 có a=m-3;

b=0;c=2m;d=8

Phương trình là phương trình mặt cầu ⇔a2+b2+c2-d>0

⇔(m-3)2+4m2-8>0 ⇔5m2-6m+1>0

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 3: Trong không gian hệ trục tọa độ Oxyz, tìm tất cả các giá trị thực của tham số m để phương trình x2+y2+z2+2(m+2)x-2(m-3)z+m2-1=0 là phương trình của mặt cầu có bán kính nhỏ nhất.

Hướng dẫn:

Phương trình x2+y2+z2+2(m+2)x-2(m-3)z+m2-1=0 có:

a=-(m+2);b=0;c=m-3;d=m2-1

Phương trình là phương trình mặt cầu ⇔ a2+b2+c2-d>0

⇔ (m+2)2+(m-3)2-m2+1>0 ⇔ m2-2m+14>0 ⇔ m∈R.

Khi đó, bán kính mặt cầu là:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dấu bằng xảy ra khi m = 1.

Vậy với m = 1 thì mặt cầu có bán kính nhỏ nhất R=√13.

Chứng minh hai vecto cùng phương, không cùng phương

A. Phương pháp giải & Ví dụ

acùng phương với b (b0 )⇔ a=k b (k∈R)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ví dụ minh họa

Bài 1: Trong không gian hệ tọa độ Oxyz, cho các vecto a=(3;2;5),

b =(3m+2;3;6-n). Tìm m, n để a , b cùng phương,

Hướng dẫn:

Ta có: a=(3;2;5), b=(3m+2;3;6-n).

a , b cùng phương

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 2: Trong không gian hệ trục Oxyz, cho các điểm A (1; 2; 3), B(2; 1; 1), C (0; 2; 4)

a) Chứng minh A, B, C là 3 đỉnh của một tam giác.

b) Tìm tọa độ điểm M thuộc mặt phẳng Oyz sao cho 3 điểm A, B, M thẳng hàng.

Hướng dẫn:

a) Ta có: AB=(1; -1; -2), AC=(-1;0;1)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiAB, AC không cùng phương

b) M∈(Oyz)⇒M(0;y;z)

AM =(-1;y-2;z-3), AB=(1; -1; -2)

A, B, M thẳng hàng ⇔ AM, AB cùng phương

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

⇔y=3;z=5

Vậy M (0; 3; 5)

Bài 3: Trong không gian với hệ toạ độ Oxyz, cho tứ giác ABCD có A(2; -1; 5), B(5; -5; 7), C(11; -1; 6), D(5; 7; 2) . Tứ giác ABCD là hình gì?

Hướng dẫn:

AB=(3; -4;2)

DC=(6; -8;4)

DC=2 AB hay DC // AB

⇒ Tứ giác ABCD là hình thang có đáy AB và CD

Công thức tính Tích có hướng của hai vecto trong không gian

A. Phương pháp giải & Ví dụ

1. Định nghĩa:

Trong không gian Oxyz cho hai vecto a=(a1;a2;a3 ) và b=(b1;b2;b3 ). Tích có hướng của hai vecto ab , kí hiệu là [a , b ], được xác định bởi

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Chú ý: Tích có hướng của hai vecto là một vecto, tích vô hướng của hai vecto là một số.

2. Tính chất

+ [a, b ]⊥ a ; [a , b ]⊥ b

+ [a , b ]=-[b, a ]

+ [i, j ]=k ; [ j , k ]= i ; [k , i ]= j

+ |[ a , b ]|=| a |.| b |.sin⁡( a , b )

+ a , b cùng phương ⇔ [a , b ]= 0 (chứng minh 3 điểm thẳng hàng)

3. Ứng dụng của tích có hướng (chương trình nâng cao)

+ Điều kiện đồng phẳng của ba vecto:

    a , bc đồng phẳng ⇔[ a , b ]. c =0

+ Diện tích hình bình hành ABCD:

    SABCD=|[AB ; AD ]|

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

+ Diện tích tam giác ABC:

    SABC=1/2 |[AB ; AC ]|

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

+ Thể tích khối hộp ABCD.A’B’C’D’:

    VABCD.A'B'C'D'=|[AB; AD ]. AA' |

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

+ Thể tích tứ diện ABCD

    VABCD=1/3 |[AB ; AC ]. AD |

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ví dụ minh họa

Bài 1: Trong không gian với hệ trục tọa độ Oxyz, cho 4 điểm A(1; 0; 1), B(-1; 1; 2), C(-1; 1; 0), D(2; -1; -2).

a) Chứng minh rằng A, B, C, D là 4 đỉnh của một tứ diện.

b) Tính thể tích tứ diện ABCD. Suy ra độ dài đường cao của tứ diện qua đỉnh A

Hướng dẫn:

AB =(-2;1;1); AC =(-2;1; -1); AD =(1; -1; -3)

⇒[AB , AC ]=(-2;-4;0) ⇒[ AB , AC ]. AD =2≠0

AB , AC , AD không đồng phẳng.

Vậy A, B, C, D là 4 đỉnh của một tứ diện.

b) VABCD=1/6 |[AB , AC ]. AD |=2/6=1/3

Ta có: BC =(0;0; -2), BD =(3; -2; -4)

⇒[ BC , BD ]=(-4; -6;0)⇒SBCD=1/2 |[BC , BD ]|=√13

VABCD=1/3 d(A;(BCD)).SBCD

⇒d(A;(BCD))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 2: Trong không gian hệ trục tọa độ Oxyz, cho 4 điểm A(-3; 5; 15), B(0; 0; 7), C(2; -1; 4), D(4; -3; 0). Chứng minh AB và CD cắt nhau.

Hướng dẫn:

+ Ta có: AB =(3; -5; -8); AC =(5; -6; -11);

AD =(7; -8; -15), CD =(2; -2; -4)

⇒[ AB , AC ]=(7;-7;7) ⇒[ AB ,(AC) ⃗ ].(AD) ⃗=0

AB , AC , AD đồng phẳng.

⇒ A, B, C, D cùng thuộc một mặt phẳng (1)

+ [AB , CD ]=(4; -4;4) ≠0AB , CD không cùng phương (2)

Từ (1) và (2) suy ra AB và CD cắt nhau.

Bài 3: : Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp ABCD.EFGH với A(1; 1; 1), B(2; 1; 2), E(-1; 2; -2), D(3; 1; 2). Tính khoảng cách từ A đến mặt phẳng (DCGH)

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

+ AB=(1;0;1), AD=(2;0;1), AE=(-2;1; -3)

⇒[ AB , AD ]=(0;1;0)⇒[ AB , AD ]. AE=1

⇒VABCD.EFGH=|[ AB , AD ]. AE |=1

+ SAEFB=|[ AB , AE ]|=√3

⇒SDCGH=SAEFB=√3

VABCD.EFGH=d(A;(DCGH)).SDCGH

⇒d(A;(DCGH))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Xem thêm các dạng bài tập Toán lớp 12 chọn lọc, có đáp án hay khác: