Các dạng bài tập Nhận dạng đồ thị hàm số chọn lọc, có đáp án - Toán lớp 12
Các dạng bài tập Nhận dạng đồ thị hàm số chọn lọc, có đáp án
Với Các dạng bài tập Nhận dạng đồ thị hàm số chọn lọc, có đáp án Toán lớp 12 tổng hợp các dạng bài tập, trên 100 bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Nhận dạng đồ thị hàm số từ đó đạt điểm cao trong bài thi môn Toán lớp 12.
- 4 dạng bài Nhận dạng đồ thị hàm số trong đề thi Đại học có lời giải Xem chi tiết
- Dạng 1: Cách nhận dạng đồ thị hàm số bậc 3 Xem chi tiết
- Dạng 2: Cách nhận dạng đồ thị hàm số bậc 4 trùng phương Xem chi tiết
- Dạng 3: Cách nhận dạng đồ thị hàm số phân thức Xem chi tiết
Cách nhận dạng đồ thị hàm số bậc 3
A. Phương pháp giải & Ví dụ
Các dạng đồ thị của hàm số bậc 3 y = ax3 + bx2 + cx + d (a ≠ 0)
Đồ thị hàm số có 2 điểm cực trị nằm 2 phía so với trục Oy khi ac < 0
Đồ thị hàm số bậc ba luôn nhận điểm uốn làm tâm đối xứng
Ví dụ minh họa
Ví dụ 1: Đường cong trong hình bên dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
A. y = x3 - 3x + 1.
B. y = -x3 + 3x2 + 1.
C. y = x3 - 3x2 + 3x + 1.
D. y = -x3 - 3x2 - 1.
Hướng dẫn
Nhìn dạng đồ thị thấy a > 0 , suy ra loại B, D.
Mặt khác hàm số không có cực trị nên loại A.
Chọn C.
Ví dụ 2: Cho hàm số bậc 3 có dạng: y = f(x) = ax3 + bx2 + cx + d.
Hãy chọn đáp án đúng?
A. Đồ thị (IV) xảy ra khi a > 0 và f'(x) = 0 có nghiệm kép.
B. Đồ thị (II) xảy ra khi a ≠ 0 và f'(x) = 0 có hai nghiệm phân biệt.
C. Đồ thị (I) xảy ra khi a < 0 và f'(x) = 0 có hai nghiệm phân biệt.
D. Đồ thị (III) xảy ra khi a > 0 và f'(x) = 0 vô nghiệm.
Hướng dẫn
Hàm số của đồ thị (II) có a < 0 nên điều kiện a ≠ 0 chưa đảm bảo. Do đó loại phương án B.
Hàm số của đồ thị (I) có a > 0 nên loại luôn phương án C.
Hàm số của đồ thị (IV) có a < 0 nên loại luôn phương án A.
Chọn D.
Ví dụ 3: Cho hàm số y = ax3 + bx2 + cx + d có đồ thị như hình vẽ bên.
Mệnh đề nào dưới đây đúng?
A. a < 0,b > 0,c > 0,d > 0.
B. a < 0,b < 0,c = 0,d > 0.
C. a > 0,b < 0,c > 0,d > 0.
D. a < 0,b > 0,c = 0,d > 0.
Hướng dẫn
Từ hình dáng đồ thị ta suy ra hệ số a < 0,d > 0 loại đáp án C.
Ta có: y' = 3ax2 + 2bx + c
Vì hàm số đạt cực tiểu tại điểm x = 0 nên y'(0) = 0 ⇒ c = 0 loại đáp án A.
Khi đó: y' = 0 ⇔ 3ax2 + 2bx = 0 ⇔ x = 0 hoặc x = -2b/3a
Do hoành độ điểm cực đại dương nên -2b/3a > 0, mà a < 0 ⇒ b > 0.
Chọn D.
Cách nhận dạng đồ thị hàm số bậc 4
A. Phương pháp giải & Ví dụ
Các dạng đồ thị của hàm số bậc 4 trùng phương y = ax4 + bx2 + c (a ≠ 0)
Đồ thị có 3 điểm cực trị :
Đồ thị có 1 điểm cực trị :
Đồ thị hàm bậc bốn trùng phương luôn nhận trục tung làm trục đối xứng
Ví dụ minh họa
Ví dụ 1: Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào ?
A. y = x4 - 3x2+1. B. y = x4 + 2x2.
C. y = x4 - 2x2. D. y = -x4 - 2x2.
Hướng dẫn
Từ đồ thị và đáp án suy ra đây là hàm số bậc 4 trùng phương: y = ax4 + bx2 + c (a ≠ 0) có 3 cực trị nên a > 0,b < 0. Do đó loại B, D. Do đồ thị qua O(0; 0)nên c = 0 loại A.
Từ đồ thị suy ra hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = ±1 nên loại A, B, D.
Chọn C.
Ví dụ 2: Giả sử hàm số y = ax4 + bx2 + c có đồ thị là hình bên dưới. Tìm a,b, c.
Hướng dẫn
y' = 4ax3 + 2bx
Nhìn đồ thị ta thấy :
Ví dụ 3: Cho hàm số y=f(x) có đồ thị (C) như hình vẽ. Chọn khẳng định sai về hàm số f(x):
A. Hàm số f(x) tiếp xúc với Ox.
B. Hàm số f(x) đồng biến trên (-1; 0).
C. Hàm số f(x) nghịch biến trên (-∞; -1).
D. Đồ thị hàm số f(x) có tiệm cận ngang là y = 0.
Hướng dẫn
Từ đồ thị ta suy ra các tính chất của hàm số:
1. Hàm số đạt CĐ tại x = 0 và đạt CT tại x = ±1.
2. Hàm số tăng trên (-1; 0) và (1; +∞).
3. Hàm số giảm trên (-∞; -1) và (0; 1).
4. Hàm số không có tiệm cận.
Chọn D.
Cách nhận dạng đồ thị hàm số phân thức
A. Phương pháp giải & Ví dụ
Các dạng đồ thị của hàm số nhất biến y = (ax + b)/(cx + d),(ab - bc ≠ 0)
Đồ thị hàm nhất biến luôn nhận giao của hai đường tiệm cận làm tâm đối xứng
Ví dụ minh họa
Ví dụ 1: Xác định a,b,c để hàm số y = (ax - 1)/(bx + c) có đồ thị như hình vẽ bên dưới.
Hướng dẫn
Đồ thị hàm số cắt Oy tại A(0; 1) nên (-1)/c = 1 ⇒ c = -1 (3)
Từ (1), (2), (3) ta có c = -1, b = 1, a = 2.
Ví dụ 2: Hàm số y = (x - 2)/(x - 1) có đồ thị là hình vẽ nào sau đây? Hãy chọn câu trả lời đúng.
A.
B.
C.
D.
Hướng dẫn
Hàm số y = (x - 2)/(x - 1) có tiệm cận đứng x = 1. Tiệm cận ngang y = 1 nên loại trường hợp D.
Đồ thị hàm số y = (x - 2)/(x - 1) đi qua điểm (0; 2) nên chọn đáp án A.
Ví dụ 3: Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Hướng dẫn
Nhìn vào đồ thị ta thấy ngay tiệm cận đứng x = -1, tiệm cận ngang y = 2. Loại B, D.
Đồ thị hàm số đi qua điểm (0; -1).
y = (2x + 1)/(x + 1) khi x = 0 ⇒ y = 1. Loại đáp án B.
y = (2x - 1)/(x + 1) khi x = 0 ⇒ y = -1. Chọn đáp án A.
Cách nhận dạng đồ thị hàm số phân thức
A. Phương pháp giải & Ví dụ
Các dạng đồ thị của hàm số nhất biến y = (ax + b)/(cx + d),(ab - bc ≠ 0)
Đồ thị hàm nhất biến luôn nhận giao của hai đường tiệm cận làm tâm đối xứng
Ví dụ minh họa
Ví dụ 1: Xác định a,b,c để hàm số y = (ax - 1)/(bx + c) có đồ thị như hình vẽ bên dưới.
Hướng dẫn
Đồ thị hàm số cắt Oy tại A(0; 1) nên (-1)/c = 1 ⇒ c = -1 (3)
Từ (1), (2), (3) ta có c = -1, b = 1, a = 2.
Ví dụ 2: Hàm số y = (x - 2)/(x - 1) có đồ thị là hình vẽ nào sau đây? Hãy chọn câu trả lời đúng.
A.
B.
C.
D.
Hướng dẫn
Hàm số y = (x - 2)/(x - 1) có tiệm cận đứng x = 1. Tiệm cận ngang y = 1 nên loại trường hợp D.
Đồ thị hàm số y = (x - 2)/(x - 1) đi qua điểm (0; 2) nên chọn đáp án A.
Ví dụ 3: Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Hướng dẫn
Nhìn vào đồ thị ta thấy ngay tiệm cận đứng x = -1, tiệm cận ngang y = 2. Loại B, D.
Đồ thị hàm số đi qua điểm (0; -1).
y = (2x + 1)/(x + 1) khi x = 0 ⇒ y = 1. Loại đáp án B.
y = (2x - 1)/(x + 1) khi x = 0 ⇒ y = -1. Chọn đáp án A.
Ví dụ 4: Cho hàm số y = (ax + b)/(cx + d) có đồ thị như hình vẽ dưới. Mệnh đề nào dưới đây đúng?
A. a < 0,b > 0,c < 0,d > 0.
B. a > 0,b < 0,c < 0,d > 0.
C. a < 0,b < 0,c < 0,d > 0.
D. a < 0,b < 0,c > 0,d < 0.
Hướng dẫn
Dựa vào đồ thị ta có
Tiệm cận ngang y = a/c < 0 nên a và c trái dấu ⇒ loại đáp án A và C.
Tiệm cận đứng x = -d/c > 0 nên d và c trái dấu (vậy nên a, d cùng dấu)
f(0) = b/d > 0 nên b và d cùng dấu ⇒ loại đáp án B. Chọn D.
Ví dụ 5: Hình vẽ dưới đây là đồ thị hàm số y = (ax + b)/(cx + d) ( ac ≠ 0 , ad - cb ≠ 0).
Mệnh đề nào dưới đây đúng?
A. ad > 0 và bd > 0. B. ad > 0 và ab < 0.
C. bd < 0 và ab > 0. D. ad < 0 và ab < 0
Hướng dẫn
+ Đồ thị hàm số cắt trục Oy tại điểm có tung độ âm ⇒ b/d < 0 ⇒ b.d < 0 ⇒ Loại A.
+ Đồ thị hàm số cắt trục Ox tại điểm có hoành độ dương ⇒ -b/a > 0 ⇒ a.b < 0 ⇒ Loại C.
+ Đồ thị hàm số có tiệm cận ngang y = a/c > 0 ⇒ a.c > 0 (1)
+ Đồ thị hàm số có tiệm cận đứng x = -d/c < 0 ⇒ c.d > 0 (2)
+ Từ (1) và (2)⇒a.d > 0 ⇒ Loại D.
Chọn B.