X

Các dạng bài tập Toán lớp 12

Các dạng bài tập Phương trình mặt phẳng chọn lọc, có đáp án - Toán lớp 12


Các dạng bài tập Phương trình mặt phẳng chọn lọc, có đáp án

Với Các dạng bài tập Phương trình mặt phẳng chọn lọc, có đáp án Toán lớp 12 tổng hợp các dạng bài tập, trên 100 bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Phương trình mặt phẳng từ đó đạt điểm cao trong bài thi môn Toán lớp 12.

Các dạng bài tập Phương trình mặt phẳng chọn lọc, có đáp án

Viết phương trình mặt phẳng đi qua 1 điểm và có vecto pháp tuyến

Phương pháp giải

Phương trình mặt phẳng đi qua điểm M (xo ;yo ;zo ) và có Vecto pháp tuyến n(A;B;C) là:

A(x -xo ) +B(y -yo ) +C(z -zo )=0

Ví dụ minh họa

Bài 1: Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A (1; 0; -2) và có vecto pháp tuyến n (2; -1;1)

Hướng dẫn:

Mặt phẳng (P) đi qua điểm A (1; 0; -2) và có vecto pháp tuyến n (2; -1;1) có phương trình là:

1(x -1) -1(y -0) +1(z +2) =0

⇔ x -y +z +1 =0

Bài 2: Viết phương trình mặt phẳng đi qua điểm A (1; -2; 1) và có vecto pháp tuyến n (0; 2;-1)

Hướng dẫn:

Mặt phẳng (P) đi qua điểm A (1; -2; 1) và có vecto pháp tuyến n (0; 2;-1) có phương trình là:

0 . (x -1) +2(y +2) -1(z -1) =0

⇔ 2y -z +5 =0

Bài 3: Viết phương trình mặt phẳng đi qua điểm O (0; 0; 0) và có vecto pháp tuyến n (-1;2;-1)

Hướng dẫn:

Mặt phẳng đi qua điểm O (0; 0; 0) và có vecto pháp tuyến n (-1;2;-1) có phương trình là:

-1(x -0) +2(y -0) -1(z -0) =0

⇔ -x +2y -z =0

Viết phương trình mặt phẳng đi qua 1 điểm và song song với mặt phẳng

Phương pháp giải

Cách 1:

1. Vecto pháp tuyến của mặt phẳng (P) là: n (A;B;C)

2. Do mặt phẳng (α) // (P) nên vecto pháp tuyến của mặt phẳng (α) là n (A;B;C).

3. Phương trình mặt phẳng (α):

A(x -xo ) +B(y -yo ) +C(z -zo) =0

Cách 2:

1. Mặt phẳng (α) // (P) nên phương trình mặt phẳng (α) có dạng:

Ax +By +Cz +D'=0 (*) với D'≠D

2. Vì mặt phẳng (α) đi qua điểm M (xo ;yo ;zo ) nên thay tọa độ điểm

M (xo ;yo ;zo ) vào (*) tìm đươc D’

Ví dụ minh họa

Bài 1: Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M (0; 1; 2) và song song với mặt phẳng (Q): 2x – 4y + 2 = 0.

Hướng dẫn:

Mặt phẳng (P) song song với mặt phẳng (Q) nên vecto pháp tuyến của mặt phẳng (Q) là n (2; -4;0)

Mặt phẳng (P) đi qua điểm M(0; 1; 2) và có vecto pháp tuyến n (2; -4;0) nên có phương trình là:

2(x -0) -4(y -1) +0 . (z -2) =0

⇔2x -4y +4 =0

⇔x -2y +2 =0

Bài 2: Viết phương trình mặt phẳng (P) đi qua điểm M (-1; 2; -3) và song song với mặt phẳng (Oxy)

Hướng dẫn:

Phương trình mặt phẳng (Oxy) là: z=0

Do mặt phẳng (P) song song song với mặt phẳng (Oxy) nên mặt phẳng (P) có dạng: z +c =0 (z≠0)

Do mặt phẳng (P) đi qua điểm M (-1; 2; -3) nên ta có: -3 +c = 0 ⇔ c =3

Vậy phương trình mặt phẳng (P) là: z +3 =0

Viết phương trình mặt phẳng đi qua 3 điểm

Phương pháp giải

1. Tìm tọa độ các vecto AB , AC

2. Vecto pháp tuyến của mặt phẳng (P) là n=[AB , AC ]

3. Điểm thuộc mặt phẳng: A (hoặc B, hoặc C)

4. Viết phương trình mặt phẳng đi qua 1 điểm và có vecto pháp tuyến

n =[ AB , AC ]

Chú ý: Phương trình mặt phẳng (P) đi qua 3 điểm A(a;0;0); B(0;b;0); C(0;0;c) có dạng là:

(x/a) +(y/b) +(z/c) =1

với a .b .c ≠ 0. Trong đó A ∈ Ox; B ∈ Oy; C∈ Oz. Khi đó (P) được gọi là phương trình mặt phẳng theo đoạn chắn.

Ví dụ minh họa

Bài 1: Trong không gian Oxyz, viết phương trình mặt phẳng đi qua ba điểm A(1; -2; 0), B(1; 1; 1) và C(0; 1; -2)

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 2: Trong không gian hệ tọa độ Oxzy, gọi (α) là mặt phẳng cắt ba trục tọa độ tại A (2; 0; 0), B(0; -3; 0), C(0; 0; 4). Phương trình mặt phẳng (α) là?

Hướng dẫn:

Cách 1:

Ta có: AB=(-2; -3;0); AC=(-2; 0; 4)

⇒ [AB , AC ]=(-12; 8; -6).

Gọi n là một vecto pháp tuyến của mặt phẳng (α) ta có:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải nên n cùng phương với [AB , AC ]

Chọn n=(6; -4; 3) ta được phương trình mặt phẳng (α) là

6(x -2) -4y +3z =0

⇔ 6x -4y +3z -12 =0

Cách 2:

Do mặt phẳng cắt các trục tọa độ nên ta có phương trình mặt phẳng theo đoạn chắn là:

(x/2) +(y/(-3)) +(z/4) =1

⇔ 6x -4y +3z -12 =0

Xem thêm các dạng bài tập Toán lớp 12 chọn lọc, có đáp án hay khác: