Cho hình chóp S.ABC có đáy là tam giác vuông cân đỉnh B và BC = a
Câu hỏi:
Cho hình chóp S.ABC có đáy là tam giác vuông cân đỉnh B và BC = a, SA ⊥ (ABC), SA = 2a. Khẳng định nào sau đây là đúng?
A. Điểm S nằm trong mặt cầu tâm A bán kính a
B. Điểm S nằm ngoài mặt cầu tâm A bán kính 2a
C. Điểm C nằm trong mặt cầu tâm A bán kính 2a
D. Cả ba điểm S, B, C cùng nằm trong mặt cầu tâm A bán kính 2a
Trả lời:
Đáp án C
Từ giả thiết ta có: SA = 2a = r; AB = a < rvà AC = a < r.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho mặt cầu tâm O bán kính R và điểm A bất kì trong không gian. Điểm A không nằm ngoài mặt cầu khi và chỉ khi:
Xem lời giải »
Câu 2:
Cho mặt cầu (S) tâm O bán kính R và một mặt phẳng (P). Kí hiệu h là khoảng cách từ O đến mặt phẳng (P). Mặt phẳng (P) có nhiều hơn một điểm chung với mặt cầu (S) nếu:
Xem lời giải »
Câu 3:
Cho mặt cầu (S) tâm O bán kính R và một đường thẳng d. Kí hiệu h là khoảng cách từ O đến đường thẳng d. Đường thẳng d có điểm chung với mặt cầu (S) nếu và chỉ nếu:
Xem lời giải »
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng 2a, SA vuông góc với đáy và SA = a. Bán kính mặt cầu tâm A tiếp xúc với mặt phẳng (SBC) theo a là:
Xem lời giải »
Câu 5:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2AD = 2a. SA vuông góc với đáy, góc giữa cạnh bên SB và đáy là 45o. Bán kính mặt cầu tâm A cắt mặt phẳng (SBD) theo một đường tròn có bán kính bằng a là:
Xem lời giải »