Tập nghiệm của bất phương trình 3^x / (3^x - 2) < 3 là A. x > 1; x < log3 2
Câu hỏi:
Tập nghiệm của bất phương trình \(\frac{{{3^x}}}{{{3^x} - 2}} < 3\) là:
A. \(\left[ \begin{array}{l}x > 1\\x < {\log _3}2\end{array} \right.\)
B. x > log32
C. x < 1
D. log32 < x < 1.
Trả lời:
Đáp án đúng là: A
Ta có: \(\frac{{{3^x}}}{{{3^x} - 2}} < 3 \Leftrightarrow 3 - \frac{{{3^x}}}{{{3^x} - 2}} > 0 \Leftrightarrow \frac{{{{3.3}^x} - 6 - {3^x}}}{{{3^x} - 2}} > 0\)
\( \Leftrightarrow \frac{{{{2.3}^x} - 6}}{{{3^x} - 2}} > 0 \Leftrightarrow \frac{{{3^x} - 3}}{{{3^x} - 2}} > 0\)
\( \Leftrightarrow \left[ \begin{array}{l}{3^x} - 3 > 0\\{3^x} - 2 < 0\end{array} \right. \Leftrightarrow \Leftrightarrow \left[ \begin{array}{l}{3^x} > 3\\{3^x} < 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > 1\\x < {\log _3}2\end{array} \right.\)
Vậy ta chọn đáp án A.