X

Các dạng bài tập Toán lớp 12

Trong không gian Oxyz, cho điểm M (1; 1; 2)


Câu hỏi:

Trong không gian Oxyz, cho điểm M (1; 1; 2). Mặt phẳng (P) qua M cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất. Gọi n=(1;a;b)  là một véc tơ pháp tuyến của (P). Tính S = a- 2b

A. S = 0

B. S = - 3

C. S = 6

D. S = -15/8

Trả lời:

Chọn A

Mặt phẳng (P) cắt các tia Ox, Oy, Oz lần lượt tại A, B, C nên A (a; 0; 0), B (0; b; 0), C (0; 0 ; c) (a, b, c > 0). Phương trình mặt phẳng

 

 

Thể tích khối tứ diện OABC nhỏ nhất khi  suy ra a = 3, b = 3, c = 6.

 

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (1; 1; 2), B (-1; 0; 4), C (0; -1; 3) và điểm M thuộc mặt cầu (S): xy(z - 1)= 1. Khi biểu thức MA+ MB+ MC2 đạt giá trị nhỏ nhất thì độ đài đoạn AM bằng:

Xem lời giải »


Câu 2:

Trong không gian Oxyz, cho hai điểm A (1; 2; 1), B (2; -1; 3). Tìm điểm M trên mặt phẳng (Oxy) sao cho MA2-2MB2  lớn nhất.

Xem lời giải »


Câu 3:

Cho lăng trụ tam giác đều ABC.A'B'C' có cạnh bên bằng cạnh đáy. Đường thẳng MN (M ∈ A'C, N ∈ BC') là đường vuông góc chung của A'C và BC'. Tỷ số NB/NC' bằng:

Xem lời giải »


Câu 4:

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x + y -2z + m = 0 và mặt cầu (S): xyz- 2x + 4y -6z - 2= 0. Có bao nhiêu giá trị nguyên của m để mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (T) có chu vi bằng 4π√3

Xem lời giải »