X

Các dạng bài tập Toán lớp 12

Trong không gian Oxyz, cho mặt cầu (S): (x - 2)^2 + (y + 1)^2 + (z + 2)^2 = 4


Câu hỏi:

Trong không gian Oxyz, cho mặt cầu (S): (x - 2)2 + (y + 1)2 + (z + 2)2 = 4 và mặt phẳng (P): 4x - 3y + m = 0. Với những giá trị nào của m thì mặt phẳng (P) và mặt cầu (S) có đúng một điểm chung?

A. m = -1

B. m = 9 hoặc m = -31

C. m = 1 hoặc m = 21

D. m = -1 hoặc m = -21

Trả lời:

Đáp án D

Mặt cầu (S) có tâm I(2;-1;-2) và có bán kính R=2. Mặt phẳng (P) và mặt cầu (S) có đúng một điểm chung khi và chỉ khi (P) tiếp xúc với (S), từ đó ta được:

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong không gian Oxyz, cho hai vectơ u = (-1; 3; 4), v = (2; -1; 5). Tích có hướng của hai vectơ u và v là:

Xem lời giải »


Câu 2:

Trong không gian Oxyz, cho mặt phẳng (P) đi qua ba điểm A(1;1;1), B(2;3;-1), C(0;3;-2). Một vectơ pháp tuyến của mặt phẳng (P) là:

Xem lời giải »


Câu 3:

Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua ba điểm A(1;0;1), B(0;-1;-3), C(2;1;3)

Xem lời giải »


Câu 4:

Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua điểm A(2;1;3), vuông góc với mặt phẳng (Q): x + y - 3z = 0 đồng thời (P) song song với trục Oz

Xem lời giải »


Câu 5:

Trong không gian Oxyz, tìm những điểm M trên trục Ox sao cho khoảng cách từ M đến mặt phẳng (P): x - 2y - 2z + 1 = 0 bằng 2

Xem lời giải »


Câu 6:

Trong không gian Oxyz, tìm những điểm M trên tia Oy sao cho khoảng cách từ điểm M đến mặt phẳng (P): x + 2y - 2z + 1 = 0 bằng 3

Xem lời giải »