Trong không gian tọa độ Oxyz, cho mặt cầu (S): x^2 +y^2 +z^2
Câu hỏi:
Trong không gian tọa độ Oxyz, cho mặt cầu (S): và mặt phẳng . Tìm m để (P) cắt (S) theo giao tuyến là một đường tròn bán kính lớn nhất.
A. m = -4
B. m = 4
C. m = 7
D. m = 0
Trả lời:
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Trong không gian với hệ tọa độ Oxyz, gọi I(a;b;c) là tâm mặt cầu đi qua điểm A(1;-1;4) và tiếp xúc với tất cả các mặt phẳng tọa độ. Tính P=a-b+c
Xem lời giải »
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(-1;0;1), B(3;2;1). Gọi C(5;3;7) thỏa mãn MA = MB và MB + MC đạt giá trị nhỏ nhất. Tính P = a + b + c
Xem lời giải »
Câu 3:
Trong không gian với hệ tọa độ Oxyz cho ba mặt phẳng , và . Một đường thẳng d thay đổi cắt ba mặt phẳng (P); (Q); (R) lần lượt tại A, B, C. Đặt . Tìm giá trị nhỏ nhất của T.
Xem lời giải »
Câu 4:
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với . Tìm tọa độ điểm M thuộc mặt phẳng (Oxy) sao cho nhỏ nhất
Xem lời giải »