Viết công thức tính thể tích V của khối tròn xoay được tạo ra khi quay hình thang
Câu hỏi:
Viết công thức tính thể tích V của khối tròn xoay được tạo ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a, x = b (a < b) quanh trục Ox
A. V=π∫baf(x)dx
B. V=∫baf2(x)dx
C. V=π∫ba|f(x)|dx
D. V=π∫baf2(x)dx
Trả lời:
Chọn D
Công thức tính thể tích V của khối tròn xoay được tạo ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a, x = b (a < b) quanh trục Ox là
V=π∫baf2(x)dx
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y=x3-x và đồ thị hàm số y=x-x2
Xem lời giải »
Câu 2:
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y=(x-1)e2x, trục tung và đường thẳng y = 0. Tính thể tích của khối tròn xoay thu được khi quay hình (H) quanh trục Ox
Xem lời giải »
Câu 3:
Sau chiến tranh thế giới thứ hai, tốc độ sinh ở cả nước phương Tây tăng rất nhanh. Giả sử rằng tốc độ sinh được cho bởi: b(t) = 5 + 2t, 0 ≤ t ≤ 10 , ( ở đó t số năm tính từ khi chiến tranh kết thúc, b(t) tính theo đơn vị triệu người). Có bao nhiêu trẻ được sinh trong khoảng thời gian này ( tức là trong 10 năm đầu tiên sau chiến tranh)?
Xem lời giải »
Câu 4:
Sau chiến tranh thế giới thứ hai, tốc độ sinh ở cả nước phương Tây tăng rất nhanh. Giả sử rằng tốc độ sinh được cho bởi: b(t) = 5 + 2t, 0 ≤ t ≤ 10 , ( ở đó t số năm tính từ khi chiến tranh kết thúc, b(t) tính theo đơn vị triệu người). Tìm khoảng thời gian T sao cho số lượng trẻ được sinh ra là 14 triệu kể từ khi kết thức chiến tranh.
Xem lời giải »