X

Các dạng bài tập Toán lớp 12

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a


Câu hỏi:

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, CD = a. Gọi I là trung điểm cạnh AD, biết hai mặt phẳng (SBI), (SCI) cùng vuông góc với đáy và thể tích khối chóp S.ABCD bằng \(\frac{{3\sqrt {15} {a^3}}}{5}\). Tính góc giữa hai mặt phẳng (SBC) và (ABCD).

A. 30°

B. 36°

C. 45°

D. 60°.

Trả lời:

Đáp án đúng là: D

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a (ảnh 1)

Gọi K là trung điểm đoạn AB ; H là chân đường cao kè từ I của tam giác IBC

Hai mặt phẳng (SBI) và (SCI) cùng vuông góc với đáy nên ta suy ra \(SI \bot (ABCD)\)

Ta có:

\(\begin{array}{l}{S_{ABCD}} = \frac{{(CD + AB).AD}}{2} = \frac{{\left( {a + 2{\rm{a}}} \right).2{\rm{a}}}}{2} = 3{a^2}\\{V_{S.ABCD}} = \frac{1}{3}SI.{S_{ABCD}} \Leftrightarrow \frac{{3\sqrt {15} {a^3}}}{5} = \frac{1}{3}.SI.3{{\rm{a}}^2}\\ \Rightarrow SI = \frac{{3\sqrt {15} a}}{5}\end{array}\)

\(\left\{ {\begin{array}{*{20}{l}}{(SBC) \cap (ABCD) = BC}\\{BC \bot (SIH)}\\{(SIH) \cap (SBC) = SH}\\{(SIH) \cap (ABCD) = IH}\end{array}} \right.\) nên góc giữa hai mặt phẳng (SBC) và (ABCD) là \(\widehat {SHI}\)

Vì K là trung điểm của AB nên AK = BK = a

Mà CD = a suy ra AK = CD

Mà AK // CD (vì cùng vuông góc với AD)

Suy ra AKCD là hình bình hành

Lại có \(\widehat {A{\rm{DC}}} = 90^\circ \) nên AKCD là hình chữ nhật

Do đó CK = AD = 2a và \(CK \bot AB\)

Suy ra tam giác CBK vuông tại K. Theo định lý Pytago có

\(BC = \sqrt {B{K^2} + C{K^2}} = \sqrt {{a^2} + 4{{\rm{a}}^2}} = a\sqrt 5 \)

Ta có \[{{\rm{S}}_{IBC}} = {S_{ABC{\rm{D}}}} - {S_{ABI}} - {S_{C{\rm{D}}I}} = 3{{\rm{a}}^2} - \frac{1}{2}.a.2{\rm{a}} - \frac{1}{2}.a.a = \frac{3}{2}{a^2}\]

\({S_{IBC}} = \frac{1}{2}IH.BC \Rightarrow IH = \frac{{2{{\rm{S}}_{IBC}}}}{{BC}} = \frac{{3{{\rm{a}}^2}}}{{a\sqrt 5 }} = \frac{{3a}}{{\sqrt 5 }}\)

Xét tam giác SHI có:

\(\tan \widehat {SHI} = \frac{{SI}}{{HI}} = \frac{{\frac{{3\sqrt {15} a}}{5}}}{{\frac{{3{\rm{a}}}}{{\sqrt 5 }}}} = \sqrt 3 \)

Suy ra \(\widehat {SHI} = 60^\circ \)

Do đó giữa hai mặt phẳng (SBC) và (ABCD) là 60°

Vậy ta chọn đáp án D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong không gian cho đường thẳng  không nằm trong mp (P), đường thẳng  được gọi là vuông góc với mp (P) nếu:

Xem lời giải »


Câu 2:

Cho đường thẳng d song song với mặt phẳng (α), nếu mặt phẳng (β) chứa d mà cắt (α) theo giao tuyến d’ thì:

Xem lời giải »


Câu 3:

Cho hình thoi ABCD có AC = BD. Tìm tâm đường tròn ngoại tiếp hình thoi ABCD?

Xem lời giải »


Câu 4:

Tìm một số thập phân biết rằng khi chia số đó cho 3,25 rồi cộng với 24,56 thì được kết quả một số tự nhiên lớn nhất có hai chữ số.

Xem lời giải »


Câu 5:

Không gian mẫu khi gieo hai đồng xu là:

Xem lời giải »


Câu 6:

Tập nghiệm của bất phương trình \(\frac{{{3^x}}}{{{3^x} - 2}} < 3\) là:

Xem lời giải »


Câu 7:

Khi sản xuất vỏ lon sữa bò hình trụ có thể tích là V, các nhà thiết kế luôn đặt mục tiêu sao cho chi phí nguyên liệu làm vỏ lon sữa bò là ít nhất, tức là diện tích toàn phần của hình trụ là nhỏ nhất. Muốn thể tích khối trụ bằng V và diện tích toàn phần hình trụ nhỏ nhất thì bán kính đáy bằng bao nhiêu?

Xem lời giải »


Câu 8:

Kí hiệu nào sau đây dùng để viết đúng mệnh đề “\(\sqrt 2 \) không phải là số hữu tỉ”?

Xem lời giải »