Cho hình chóp S.ABCD có SA vuông góc với (ABCD). Biết
Câu hỏi:
Cho hình chóp S.ABCD có . Biết , cạnh SC tạo với đáy một góc và diện tích tứ giác ABCD là . Gọi H là hình chiếu của A trên cạnh SC. Tính thể tích khối chóp H.ABCD.
A.
B.
C.
D.
Trả lời:
Câu hỏi:
Cho hình chóp S.ABCD có . Biết , cạnh SC tạo với đáy một góc và diện tích tứ giác ABCD là . Gọi H là hình chiếu của A trên cạnh SC. Tính thể tích khối chóp H.ABCD.
A.
B.
C.
D.
Trả lời:
Câu 1:
Cho hình hộp ABCD.A’B’C’D’ có thể tích bằng V. Gọi M, N, P, Q, E, F lần lượt là tâm các hình bình hành ABCD, A’B’C’D’, ABB’A’, BCC’B’, CDD’C’, DAA’D’. Thể tích khối đa diện có các đỉnh M, P, Q, E, F, N bằng:
Câu 2:
Cho khối lăng trụ đứng ABC.A’B’C’ có đáy là tam giác cân tại C, . Thể tích khối lăng trụ ABC.A’B’C’ bằng:
Câu 3:
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, , cạnh BC = a, đường chéo A’B tạo với mặt phẳng (ABC) một góc . Thể tích khối lăng trụ ABC.A’B’C’ là:
Câu 4:
Một khối chóp tam giác có cạnh đáy bằng 6, 8, 10. Một cạnh bên có độ dài bằng 4 và tạo với đáy một góc . Thể tích của khối chóp đó là:
Câu 5:
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng . Tính thể tích khối chóp S.ABC?
Câu 6:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy (ABCD) và . Điểm M thuộc cạnh SA sao cho . Xác định k sao cho mặt phẳng (BMC) chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau.
Câu 7:
Cho hình lăng trụ ABC.A’B’C’ có độ dài tất cả các cạnh bằng a và hình chiếu vuông góc của đỉnh C trên (ABB’A’) là tâm của hình bình hành ABB’A’. Thể tích của khối lăng trụ là:
Câu 8:
Cho tứ diện đều ABCD có cạnh bằng 8. Ở bốn đỉnh tứ diện, người ta cắt đi các tứ diện đều bằng nhau có cạnh bằng x, biết khối đa diện tạo thành sau khi cắt có thể tích bằng thể tích tứ diện ABCD. Giá trị của x là: