Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N.
Câu hỏi:
Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. Hình chiếu của O trên (P) là I. Mệnh đề nào sau đây đúng?
A. NI tiếp xúc với (S)
B.
C. Cả A và B đều sai.
D. Cả A và B đều đúng.
Trả lời:
Chọn D
Vì I là hình chiếu của O trên (P) nên d[O, (P)] = OI mà d[O, (P)] = R nên I là tiếp điểm của (P) và (S).
Đường thẳng OM cắt (P) tại N nên IN vuông góc với OI tại I. Suy ra IN tiếp xúc với (S).
Tam giác OIN vuông tại I nên
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho đường tròn (C) đường kính AB và đường thẳng . Để hình tròn xoay sinh bởi (C) khi quay quanh là một mặt cầu thì cần có thêm điều kiện nào sau đây:
(I) Đường kính AB thuộc .
(II) cố định và đường kính AB thuộc .
(III) cố định và hai điểm A, B cố định trên .
Xem lời giải »
Câu 2:
Cho mặt cầu S(O;R) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:
Xem lời giải »
Câu 3:
Cho mặt cầu S(O;R) và một điểm A, biết OA = 2R. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho . Khi đó khoảng cách từ O đến BC bằng:
Xem lời giải »
Câu 4:
Cho mặt cầu S(O;R) và mặt phẳng . Biết khoảng cách từ O đến bằng . Khi đó thiết diện tạo bởi mặt phẳng với S(O;R) là một đường tròn có đường kính bằng:
Xem lời giải »
Câu 5:
Cho mặt cầu tâm I bán kính R = 2,6 cm. Một mặt phẳng cắt mặt cầu và cách tâm I một khoảng bằng 2,4 cm. Thế thì bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là:
Xem lời giải »