X

Các dạng bài tập Toán lớp 12

Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu cùa H


Câu hỏi:

Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu cùa H lên AB và AC.

a) Chứng minh: AM.AB = AN.AC.

 b) Chứng minh: SAMNSACB=sin2B.sin2C

Trả lời:

Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu cùa H (ảnh 1)

a) Có : AH là đường cao của tam giác ABC  AHB^=90°

Tam giác AHB vuông tại H có AM là đường cao

AM.AB = AH2 

Tam giac AHC vuong tai H có AN là đường cao

AN.AC = AH2 

Nên AM.AB =AN.AC

b) Tam giác AHB vuông tại H nên sinB=AHAB

Tam giác AHC vuông tại H  sinC=AHAC

Áp dụng công thức tính diện tích theo định lý sin, ta có:

Lại có: SABC=12.AB.AC.sinA

SAMN=12.AM.AN.sinA

Suy ra: SAMNSABC=12.AM.AN.sinA12.AB.AC.sinA=AM.ANAB.AC=AH2.AH2AB2.AC2=AHAB2.AHAC2=sin2B.sin2C

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho x + y = 15. Tìm min, max B=x4+y3

Xem lời giải »


Câu 2:

Cho x,y,z là các số nguyên thỏa mãn: (x - y)(y - z)(z – x) = x + y + z. Chứng minh x + y + z chia hết cho 27.

Xem lời giải »


Câu 3:

Cho x, y, z thỏa mãn đk x + y + z = a. Tìm GTNN của P=1+ax1+ay1+az

Xem lời giải »


Câu 4:

Cho x + 3y – 4 = 0, tính x3 - x2 + 9x2y - 9y2 + 27xy2 + 27y3 - 6xy

Xem lời giải »


Câu 5:

Cho tam giác ABC vuông tại A, đường cao AH. Trên AC lấy điểm K ( K khác A và C), gọi D là hình chiếu của A trên BK. Cho biết BC = 4BH.

Chứng minh rằng: SBHD=14SBKC.cos2ABD^

Xem lời giải »


Câu 6:

Chứng minh 1cos2xsin2x=tanx

Xem lời giải »


Câu 7:

Chứng minh rằng trong tam giác ABC ta có: sinC = sin (A + B).

Xem lời giải »


Câu 8:

Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC. Chứng minh:

a) ∆ABH = ∆ACH

b) AH là tia phân giác của góc BAC.

Xem lời giải »