Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu cùa H
Câu hỏi:
Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu cùa H lên AB và AC.
a) Chứng minh: AM.AB = AN.AC.
b) Chứng minh:
Trả lời:
a) Có : AH là đường cao của tam giác ABC ⇒
Tam giác AHB vuông tại H có AM là đường cao
⇒ AM.AB = AH2
Tam giac AHC vuong tai H có AN là đường cao
⇒ AN.AC = AH2
Nên AM.AB =AN.AC
b) Tam giác AHB vuông tại H nên
Tam giác AHC vuông tại H ⇒
Áp dụng công thức tính diện tích theo định lý sin, ta có:
Lại có:
Suy ra:
Xem thêm bài tập Toán có lời giải hay khác:
Câu 2:
Cho x,y,z là các số nguyên thỏa mãn: (x - y)(y - z)(z – x) = x + y + z. Chứng minh x + y + z chia hết cho 27.
Xem lời giải »
Câu 3:
Cho x, y, z thỏa mãn đk x + y + z = a. Tìm GTNN của
Xem lời giải »
Câu 4:
Cho x + 3y – 4 = 0, tính x3 - x2 + 9x2y - 9y2 + 27xy2 + 27y3 - 6xy
Xem lời giải »
Câu 5:
Cho tam giác ABC vuông tại A, đường cao AH. Trên AC lấy điểm K ( K khác A và C), gọi D là hình chiếu của A trên BK. Cho biết BC = 4BH.
Chứng minh rằng:
Xem lời giải »
Câu 7:
Chứng minh rằng trong tam giác ABC ta có: sinC = sin (A + B).
Xem lời giải »
Câu 8:
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC. Chứng minh:
a) ∆ABH = ∆ACH
b) AH là tia phân giác của góc BAC.
Xem lời giải »