X

Các dạng bài tập Toán lớp 12

Tìm tất cả các giá trị của tham số m để bất phương trình mx + 4 > 0 nghiệm đúng


Câu hỏi:

Tìm tất cả các giá trị của tham số m để bất phương trình mx + 4 > 0 nghiệm đúng với mọi |x| < 8.

A. \(m \in \left[ {\frac{{ - 1}}{2};\frac{1}{2}} \right]\)

B. \(m \in \left( { - \infty ;\frac{1}{2}} \right]\)

C. \(m \in \left[ { - \frac{1}{2}; + \infty } \right)\)

D. \(m \in \left[ { - \frac{1}{2};0} \right) \cup \left( {0;\frac{1}{2}} \right]\).

Trả lời:

Đáp án đúng là: A

Ta có \(|x| < 8 \Leftrightarrow - 8 < x < 8 \Leftrightarrow x \in ( - 8;8)\)

+) TH1: \(m > 0\), bất phương trình \( \Leftrightarrow mx > - 4\)

\( \Leftrightarrow x > - \frac{4}{m} \Rightarrow S = \left( { - \frac{4}{m}; + \infty } \right)\)

Yêu cầu bài toán \( \Leftrightarrow ( - 8;8) \subset S\)

\( \Leftrightarrow - \frac{4}{m} \le - 8 \Leftrightarrow m \le \frac{1}{2}\)

Suy ra \(0 < m \le \frac{1}{2}\) thỏa mãn yêu cầu bài toán

+) TH2: \(m = 0\), bất phương trình trở thành

\(0.x + 4 > 0\): đúng với mọi x

Do đó \(m = 0\) thỏa mãn yêu cầu bài toán

+) TH3: \(m < 0\), bất phương trình \( \Leftrightarrow mx > - 4\)

\( \Leftrightarrow x < - \frac{4}{m} \Rightarrow S = \left( { - \infty ; - \frac{4}{m}} \right)\)

Yêu cầu bài toán \( \Leftrightarrow ( - 8;8) \subset S\)

\( \Leftrightarrow - \frac{4}{{\;m}} \ge 8 \Leftrightarrow m \ge - \frac{1}{2}\)

Suy ra \( - \frac{1}{2} \le m < 0\) thỏa mãn yêu cầu bài toán

Kết hợp các trường hợp ta được: \[ - \frac{1}{2} \le m \le \frac{1}{2}\]

Vậy ta chọn đáp án A.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Miền nghiệm của bất phương trình: 3x + 2(y + 3) > 4(x + 1) – y + 3 là nửa mặt phẳng chứa điểm:

Xem lời giải »


Câu 2:

Trong các mệnh đề mệnh đề nào sai?

Xem lời giải »


Câu 3:

Hệ bất phương trình \(\left\{ \begin{array}{l}\left( {x + 3} \right)\left( {4 - x} \right) > 0\\x < m - 1\end{array} \right.\) vô nghiệm khi:

Xem lời giải »


Câu 4:

Trong một hộp bút có 2 bút đỏ, 3 bút đen và 2 bút chì. Hỏi có bao nhiêu cách để lấy một cái bút?

Xem lời giải »


Câu 5:

Cho hình bình hành ABCD tâm O. Khi đó \(\overrightarrow {OB} - \overrightarrow {OA} \) bằng:

Xem lời giải »


Câu 6:

Một bình đựng 5 viên bi xanh và 3 viên bi đỏ (các viên bi chỉ khác nhau về màu sắc). Lấy ngẫu nhiên một viên bi, rồi lấy ngẫu nhiên một viên bi nữa. Khi tính xác suất của biến cố “Lấy lần thứ hai được một viên bi xanh”, ta được kết quả:

Xem lời giải »


Câu 7:

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1; 2; –1); B(2; –1; 3); C(–3; 5; 1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Xem lời giải »