Tìm tất cả các giá trị của tham số m sao cho phương trình x^3 - 3x^2 + (2m - 2)x
Câu hỏi:
Tìm tất cả các giá trị của tham số m sao cho phương trình x3 – 3x2 + (2m – 2)x + m – 3 = 0 có ba nghiệm x1, x2, x3 thỏa mãn x1 < –1 < x2 < x3.
A. m > –5
B. m < –5
C. m ≤ –5
D. m < –6.
Trả lời:
Đáp án đúng là: B
Đặt f(x) = x3 – 3x2 + (2m – 2)x + m – 3 = 0. Ta thấy hàm số liên tục trên ℝ
Dễ thấy nếu x→−∞ thì f(x)→−∞ hay f(x)<0
Suy ra điều kiện cần để f(x) = 0 có 3 nghiệm thỏa mãn
x1<−1<x2<x3l\`af(−1)>0⇔−m−5>0⇔m<−5
Điều kiện đủ: với m < –5 ta có
lim nên tồn tại a < –1 sao cho f(a) < 0
Mặt khác f( - 1) = - m - 5 > 0. Suy ra f(a).f( - 1) < 0
Do đó tồn tại {x_1} \in (a; - 1) sao cho f\left( {{x_1}} \right) = 0
f(0) = m - 3 < 0,f( - 1) > 0. Suy ra f(0).f( - 1) < 0
Do đó tồn tại {x_2} \in ( - 1;0) sao cho f\left( {{x_2}} \right) = 0
Ta có: \mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty nên tồn tại b > 0 sao cho f(b) > 0
Mặt khác f(0) < 0. Suy ra f(0) . f(b) < 0
Do đó tồn tại {x_3} \in (0;b) sao cho f\left( {{x_3}} \right) = 0
Suy ra m < –5 thỏa mãn yêu cầu bài toán
Vậy đáp án cần chọn là: B.