X

Các dạng bài tập Toán lớp 12

Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3


Câu hỏi:

Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3, biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 1x3 thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và 3x2-2

A. V=32+215

B. V=124π3

C. V=1243

D. V=32+215π 

Trả lời:

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Thể tích vật thể nằm giữa hai mặt phẳng x = 0 và x = 2, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0x2 là một nửa đường tròn đường kính  bằng:

Xem lời giải »


Câu 2:

Cho hình phẳng giới hạn bởi D=y=tanx; y=0; x=0; x=π3. Thể tích vật tròn xoay khi D quay quanh trục Ox là: V=πa-πb với a,bR. Tính T=a2+2b

Xem lời giải »


Câu 3:

Tính thể tích vật thể có đáy là một hình tròn giới hạn bởi đường tròn có phương trình x2+y2=1 và mỗi thiết diện vuông góc với trục Ox là một hình vuông (tham khảo hình bên)

Xem lời giải »


Câu 4:

Cho hình phẳng (H) giới hạn bởi paraboly=ax2+1(a>0), trục tung và đường thẳng x = 1. Quay (H) quanh trục Ox được một khối tròn xoay có thể tích bằng 2815π. Mệnh đề nào dưới đây đúng?

Xem lời giải »