Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm M(-x0, y0, -z0)
Câu hỏi:
Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm M() và có một vectơ pháp tuyến = (-A; B; -C) là:
A. A(x - ) - B(y - ) + C(z - ) = 0
B. A(x + ) - B(y - ) + C(z + z0) = 0
C. A(x - ) - B(y + ) + C(z - ) = 0
D. A(x + ) - B(y + ) + C(z + ) = 0
Trả lời:
Đáp án B
Phương trình của mặt phẳng (P) đi qua điểm M(-; y0; -z0) và có một vectơ pháp tuyến = (-A; B; -C) là:
-A(x + ) + B(y - ) - C(z + ) = 0
⇔ A(x + ) - B(y - ) + C(z + ) = 0
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Trong không gian Oxyz, cho hai điểm A(1;0;-2), B(-1;1;1). Phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB là:
Xem lời giải »
Câu 2:
Trong không gian Oxyz, cho hai điểm A(1;3;5), B(-1;5;3). Lập phương trình mặt phẳng trung trực (P) của đoạn thẳng AB
Xem lời giải »
Câu 3:
Trong không gian Oxyz, gọi lần lượt là hình chiếu vuông góc của điểm A(4;3;2) trên các trục Ox, Oy, Oz. Trong các khẳng định sau, khẳng định nào sai?
Xem lời giải »
Câu 4:
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua điểm A(2 ;1 ;-3), vuông góc với mặt phẳng (Q): x + y - 3z = 0 đồng thời (P) song song với trục Oz.
Xem lời giải »
Câu 5:
Trong không gian Oxyz, cho điểm M(-x0; -y0; z0) và phương trình của mặt phẳng (P): Ax + By + Cz + D = 0. Khoảng cách từ điểm M đến mặt phẳng (P) là:
Xem lời giải »
Câu 6:
Trong không gian Oxyz, cho hai mặt phẳng song song (P): Ax + By + Cz + D = 0 và (Q): Ax + By + Cz + D' = 0. M là một điểm di động trên mặt phẳng (P). Khẳng định nào dưới đây có thể sai?
Xem lời giải »
Câu 7:
Trong các khẳng định dưới đây, khẳng định nào đúng?
Xem lời giải »
Câu 8:
Trong các khẳng định dưới đây, khẳng định nào sai?
Xem lời giải »