X

Các dạng bài tập Toán lớp 12

Trong không gian với hệ tọa độ Oxyz, cho A (-3;0;0), B (0;0;3), C (0;3;0)


Câu hỏi:

Trong không gian với hệ tọa độ Oxyz, cho A (-3;0;0), B (0;0;3), C (0;-3;0) và mặt phẳng (P): x + y + z - 3 = 0. Tìm trên (P) điểm M sao cho MA+MB-MC  nhỏ nhất.

A. M (3;3;-3)

B. M (-3;-3;3)

C. M (3;-3;3)

D. M (-3;3;3)

Trả lời:

Chọn D

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.

Xem lời giải »


Câu 2:

Trong không gian Oxyz, cho ba điểm A(0;0;-1), B(-1;1;0), C(1;0;1). Tìm điểm M sao cho 3MA+ 2MB- MC2 đạt giá trị nhỏ nhất.

Xem lời giải »


Câu 3:

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C (0;0;c), trong đó a > 0, b > 0, c > 0. Mặt phẳng (ABC) đi qua điểm I (1;2;3) sao cho thể tích khối tứ diện OABC đạt giá trị lớn nhất. Khi đó các số a, b, c thỏa mãn đẳng thức nào sau đây?

Xem lời giải »


Câu 4:

Cho tứ diện ABCD có BD = 2, hai tam giác ABD, BCD có diện tích lần lượt là 6 và 10. Biết thể tích của tứ diện ABCD bằng 16, tính số đo góc giữa hai mặt phẳng (ABD) và (BCD).

Xem lời giải »


Câu 5:

Trong không gian với hệ tọa độ Oxyz cho điểm A (3;2;-1) và đường thẳng d : x=ty=tz=1+t

Viết phương trình mặt phẳng (P) chứa d sao cho khoảng cách từ A đến (P) là lớn nhất.

Xem lời giải »


Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: x+12=y+11=z+13   d2=x-21=y2=z-93

Mặt cầu có một đường kính là đoạn thẳng vuông góc chung của d1 và d2 có phương trình là:

Xem lời giải »


Câu 7:

Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. Gọi K là trung điểm DD'. Tính khoảng cách giữa hai đường thẳng CK và A'D.

Xem lời giải »


Câu 8:

Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2;-3;7), B(0;4;1), C(3;0;5) và D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức MA+MB+MC+MD  đạt giá trị nhỏ nhất. Khi đó tọa độ của M là:

Xem lời giải »