X

Các dạng bài tập Toán lớp 12

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)^2


Câu hỏi:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S:x12+y+12+z+22=4 và 2 đường thẳng Δ1:x=2ty=1tz=t và Δ2:x11=y1=z1. Một phương trình mặt phẳng (P) song song với Δ1,Δ2 và tiếp xúc với mặt cầu (S) là:

A. x+z+322=0

B. y+z322=0

C. x+y+3+22=0

D. y+z+3+22=0 

Trả lời:

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:x=ty=1z=t và 2 mặt phẳng (P) và (Q) lần lượt có phương trình x+2y+2z+3=0; x+2y+2z+7=0. Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng d, tiếp xúc với hai mặt phẳng (P) và (Q)

Xem lời giải »


Câu 2:

Trong khôn gian Oxyz, cho biết có hai mặt cầu có tâm nằm trên đường thẳng d:x2=y11=z+21, tiếp xúc đồng thời với hai mặt phẳng α:x+2y2z+1=0 và β:2x3y6z2=0. Gọi R1;R2R1>R2 là bán kính của hai mặt cầu đó. Tỉ số R1R2 bằng:

Xem lời giải »


Câu 3:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:x2=z31=y21 và hai mặt phẳng P:x2y+2z=0; Q:x2y+3z5=0. Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiêp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S)

Xem lời giải »


Câu 4:

Trong không gian Oxyz, cho 3 điểm A(0;1;1), B(3;0;-1) và C(0;21;-19) mặt cầu S:x12+y12+z12=1. Điểm M thuộc mặt cầu (S) sao cho tổng 3MA2+2MB2+MC2 đạt giá trị nhỏ nhất, khi đó, độ dài vec tơ OM là:

Xem lời giải »


Câu 5:

Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng tiếp xúc với S:x2+y2+z22x4y6z2=0 và song song với α:4x+3y12z+10=0

Xem lời giải »


Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;-1;0), B(1;1;-1) và mặt cầu S:x2+y2+z22x+4y2z3=0. Mặt phẳng (P) đi qua A, B và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:

Xem lời giải »


Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) đi qua điểm A2;2;5 tiếp xúc với các mặt phẳng α:x=1,β:y=1,γ:z=1. Tính bán kính của mặt cầu (S):

Xem lời giải »


Câu 8:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S:x22+y+12+z42=10 và mặt phẳng P:2x+y+5z+9=0. Gọi (Q) là tiết diện của (S) tại M5;0;4. Tính góc giữa (P) và (Q)

Xem lời giải »