Cho A = 2 + 2^2 + 2^3 + + 260. Hãy thu gọn tổng A
Câu hỏi:
Cho A = 2 + 22 + 23 + … + 260. Hãy thu gọn tổng A.
Trả lời:
A = 2 + 22 + 23 + … + 260
2A = 22 + 23 + …. + 261
2A – A = (22 + 23 + …. + 261) – (2 + 22 + 23 + … + 260)
A = 261 – 2.
Câu hỏi:
Cho A = 2 + 22 + 23 + … + 260. Hãy thu gọn tổng A.
Trả lời:
A = 2 + 22 + 23 + … + 260
2A = 22 + 23 + …. + 261
2A – A = (22 + 23 + …. + 261) – (2 + 22 + 23 + … + 260)
A = 261 – 2.
Câu 1:
Cho tam giác ABC nhọn. Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM.
a) Chứng minh AH vuông góc với BC.
b) Gọi E là trung điểm AH. Chứng minh bốn điểm A, M, H, E cùng nằm trên một đường tròn và EM là tiếp tuyến của đường tròn (O).
Câu 2:
Tính giá trị biểu thức: \(\frac{{2\sqrt {15} - 2\sqrt {10} + \sqrt 6 - 3}}{{2\sqrt 5 - 2\sqrt {10} - \sqrt 3 + \sqrt 6 }}\).
Câu 3:
Cho nửa đường tròn (O). Đường kính AB = 6 cm. Kẻ các tiếp tuyến Ax, By cùng phía đối với nửa đường tròn đối với AB. Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CE với nửa đường tròn (E là tiếp điểm), CE cắt By tại D.
a) Chứng minh \[\widehat {COD} = 90^\circ \].
b) Chứng minh AEB và COD đồng dạng.
c) Gọi I là trung điểm của CD. Vẽ đường tròn (I) bán kính IC. Chứng minh rằng AB là tiếp tuyến của (I).
Câu 4:
Cho tam giác ABC vuông tại A, M là trung điểm của BC. D, E lần lượt là hình chiếu của M trên AB và AC.
a) Tứ giác ADME là hình gì, tại sao?
b) Chứng minh DE = \(\frac{1}{2}BC\).
c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành. Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.
d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?
Câu 6:
tổng A = 8 + 12 + x với x thuộc ℕ. Tìm x để:
a) A chia hết cho 2.
b) A không chia hết cho 2.
Câu 7:
Điền chữ số thích hợp vào dấu * để được số M = \(\overline {37*} \) thỏa mãn điều kiện:
a) M chia hết cho 3;
b) M chia hết cho 9;
c) M chia hết cho 3 nhưng không chia hết 9.
Câu 8:
Thực hiện phép tính \(\left( {1 - \frac{1}{{1 + 2}}} \right)\left( {1 - \frac{1}{{1 + 2 + 3}}} \right)...\left( {1 - \frac{1}{{1 + 2 + 3 + ... + 2006}}} \right)\).