X

Các dạng bài tập Toán lớp 12

Cho các số thực a, b, c thuộc khoảng (1;dương vô cùng) và thỏa mãnlog^2 căn a b+log b c.log b (c^2/b)+9lig a c=4log a b


Câu hỏi:

Cho các số thực a, b, c thuộc khoảng 1;+ và thỏa mãn loga2b+logbc.logbc2b +9logac=4logab. Giá trị của biểu thức logab+logbc2 bằng:

A. 1

B. 12

C. 2

D. 3

Trả lời:

Ta có:

Đặt  ta có:  (do a, b, c >1)

Khi đó phương trình (*) trở thành:

TH1: y=-4x loại do x, y > 0

TH2: . Khi đó ta có: 

Đáp án cần chọn là: A.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm giá trị của a để phương trình 2+3x+1-a2-3x -4=0 có 2 nghiệm phân biệt thỏa mãn: x1-x2=log2+33, ta có a thuộc khoảng:

Xem lời giải »


Câu 2:

Tìm tập hợp tất cả các tham số m sao cho phương trình 4x2-2x+1-m.2x2-2x+1+3m-2=0 có 4 nghiệm phân biệt.

Xem lời giải »


Câu 3:

Có bao nhiêu số nguyên m thuộc -2020;2020 sao cho phương trình 4x-12-4m.2x2-2x+3m-2=0 có bốn nghiệm phân biệt?

Xem lời giải »


Câu 4:

Các giá trị thực của tham số m để phương trình: 12x+4-m.3x-m=0 có nghiệm thuộc khoảng (-1; 0) là

Xem lời giải »


Câu 5:

Cho phương trình 4-x-m.log2x2-2x+3 +22x-x2.log122x-m+2=0 với m là tham số. Tổng tất cả các giá trị của tham số m để phương trình đã cho có ba nghiệm phân biệt là:

Xem lời giải »


Câu 6:

Cho các số thực dương a, b, c khác 1 thỏa mãn  loga2b+logb2c+2logbcb=logaca3b. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=logaab-logbbc. Tính giá trị của biểu thức S=2m2+9M2

Xem lời giải »