Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N.
Câu hỏi:
Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:
a)
b) Tứ giác OKME là hình chữ nhật.
c) P, O, N thẳng hàng và KE // PN.
Trả lời:
a) Xét (O) có PM // AB
⇒ 2 cung và bị chắn bởi 2 dây trên sẽ bằng nhau.
mà BM = BN (∆BMN cân tại B vì có BE vừa là đ/c, đường trung tuyến)
⇒
⇒
b) Xét (O) có OI đi qua điểm chính giữa của PM (giả thiết)
⇒ OI vuông góc với dây PM tại K
⇒
Xét tứ giác OKME có 3 góc vuông: (cmt),
( MN vuông góc với OB tại E)
(vì PM//AB, AB vuông góc với MN ⇒ PM vuông góc với MN tại M)
⇒ OKME là hình chữ nhật
c) Ta có: (vì 2 góc đồng vị, MP//AB)
mà (∆POK vuông tại K)
⇒
⇒
⇒ P, O, N thẳng hàng
- Xét ∆PMN có KE đường trung bình (K là trung điểm PM, E là trung điểm MN)
⇒ KE//PN.